Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 13: Identical Particles

Chapter 13: Identical Particles

pp. 410-444

Authors

, Oregon State University
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

For a proper quantum mechanical description of multiple-particle systems, we must account for the indistinguishability of fundamental particles. The symmetrization postulate requires that the quantum state vector of a system of identical particles be either symmetric or antisymmetric with respect to exchange of any pair of identical particles within the system. Nature dictates that integer spin particles – bosons – have symmetric states, while half-integer spin particles – fermions – have antisymmetric states. The best-known manifestation of this is the Pauli exclusion principle, which limits the number of electrons in given atomic levels and leads to the structure of the periodic table.

Keywords

  • identical particles
  • Pauli exclusion principle
  • spin
  • fermions
  • bosons
  • exchange
  • symmetrization
  • helium
  • molecule
  • periodic table

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$69.00
Hardback
US$69.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers