We extend the mathematical description of quantum mechanics by using operators to represent physical observables. The only possible results of measurements are the eigenvalues of operators. The eigenvectors of the operator are the basis states corresponding to each possible eigenvalue. We find the eigenvalues and eigenvectors by diagonalizing the matrix representing the operator, which allows us to predict the results of measurements. We characterize quantum mechanical measurements of an observable A by the expectation value and the uncertainty. We quantify the disturbance that measurement inflicts on quantum systems through the quantum mechanical uncertainty principle. We also introduce the projection postulate, which states how the quantum state vector is changed after a measurement.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.