To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exactly a decade after the publication of the Sz.-Nagy Dilation Theorem, Tsuyoshi Andô proved that, just like for a single contractive operator, every commuting pair of Hilbert-space contractions can be lifted to a commuting isometric pair. Although the inspiration for Andô's proof comes from the elegant construction of Schäffer for the single-variable case, his proof did not shed much light on the explicit nature of the dilation operators and the dilation space as did the original Schäffer and Douglas constructions for a single contraction. Consequently, there has been little follow-up in the direction of a more systematic extension of the Sz.-Nagy–Foias dilation and model theory to the bi-variate setting. Sixty years since the appearance of Andô's first step comes this thorough systematic treatment of a dilation and model theory for pairs of commuting contractions.
This is a contemporary treatment of composition operators on Banach spaces of analytic functions in one complex variable. It provides a step-by-step introduction, starting with a review (including full proofs) of the key tools needed, and building the theory with a focus on Hardy and Bergman spaces. Several proofs of operator boundedness (Littlewood's principle) are given, and the authors discuss approaches to compactness issues and essential norm estimates (Shapiro's theorem) using different tools such as Carleson measures and Nevanlinna counting functions. Membership of composition operators in various ideal classes (Schatten classes for instance) and their singular numbers are studied. This framework is extended to Hardy-Orlicz and Bergman-Orlicz spaces and finally, weighted Hardy spaces are introduced, with a full characterization of those weights for which all composition operators are bounded. This will be a valuable resource for researchers and graduate students working in functional analysis, operator theory, or complex analysis.
Filling a gap in the literature, this book explores the theory of gradient flows of convex functionals in metric measure spaces, with an emphasis on weak solutions. It is largely self-contained and assumes only a basic understanding of functional analysis and partial differential equations. With appendices on convex analysis and the basics of analysis in metric spaces, it provides a clear introduction to the topic for graduate students and non-specialist researchers, and a useful reference for anyone working in analysis and PDEs. The text focuses on several key recent developments and advances in the field, paying careful attention to technical detail. These include how to use a first-order differential structure to construct weak solutions to the p-Laplacian evolution equation and the total variation flow in metric spaces, how to show a Euler–Lagrange characterisation of least gradient functions in this setting, and how to study metric counterparts of Cheeger problems.
Addressing the active and challenging field of spectral theory, this book develops the general theory of spectra of discrete structures, on graphs, simplicial complexes, and hypergraphs. In fact, hypergraphs have long been neglected in mathematical research, but due to the discovery of Laplace operators that can probe their structure, and their manifold applications from chemical reaction networks to social interactions, they now constitute one of the hottest topics of interdisciplinary research. The authors' analysis of spectra of discrete structures embeds intuitive and easily visualized examples, which are often quite subtle, within a general mathematical framework. They highlight novel research on Cheeger type inequalities which connect spectral estimates with the geometry, more precisely the cohesion, of the underlying structure. Establishing mathematical foundations and demonstrating applications, this book will be of interest to graduate students and researchers in mathematics working on the spectral theory of operators on discrete structures.
In this paper, we consider asymptotic behaviours of multiscale multivalued stochastic systems with small noises. First of all, for general, fully coupled systems for multivalued stochastic differential equations of slow and fast motions with small noises in the slow components, we prove an averaging principle in the strong convergence sense. Moreover, a convergence rate is given in a special case. Next, for these systems, we establish the large deviation principle by the weak convergence approach. Then, for a special case, the rate function is explicitly characterized. Finally, we explain our results with an example.
We study the sets of points where a Lévy function and a translated Lévy function share a given couple of Hölder exponents, and we investigate how their Hausdorff dimensions depend on the translation parameter.
We study the relationship between the enumerative geometry of rational curves in local geometries and various versions of maximal contact logarithmic curve counts. Our approach is via quasimap theory, and we show versions of the [vGGR19] local/logarithmic correspondence for quasimaps, and in particular for normal crossings settings, where the Gromov-Witten theoretic formulation of the correspondence fails. The results suggest a link between different formulations of relative Gromov-Witten theory for simple normal crossings divisors via the mirror map. The main results follow from a rank reduction strategy, together with a new degeneration formula for quasimaps.
We consider steady-state diffusion in a bounded planar domain with multiple small targets on a smooth boundary. Using the method of matched asymptotic expansions, we investigate the competition of these targets for a diffusing particle and the crucial role of surface reactions on the targets. We start from the classical problem of splitting probabilities for perfectly reactive targets with Dirichlet boundary conditions and improve some earlier results. We discuss how this approach can be generalised to partially reactive targets characterised by a Robin boundary condition. In particular, we show how partial reactivity reduces the effective size of the target. In addition, we consider more intricate surface reactions modelled by mixed Steklov-Neumann or Steklov-Neumann-Dirichlet problems. We provide the first derivation of the asymptotic behaviour of the eigenvalues and eigenfunctions for these spectral problems in the small-target limit. Finally, we show how our asymptotic approach can be extended to interior targets in the bulk and to exterior problems where diffusion occurs in an unbounded planar domain outside a compact set. Direct applications of these results to diffusion-controlled reactions are discussed.
We establish sufficient conditions for the existence of ground states of the following normalized nonlinear Schrödinger–Newton system with a point interaction:
where $p \gt 2$; $\alpha, \beta \in \mathbb{R}$; $c \gt 0$ and $- \Delta_\alpha$ denotes the Laplacian of point interaction with s-wave scattering length $(- 2 \pi \alpha)^{- 1}$, the unknowns being $u \colon \mathbb{R}^2 \to \mathbb{C}$, $w \colon \mathbb{R}^2 \to \lbrack0, \infty\lbrack$ and the Lagrange multiplier $\omega \in \mathbb{R}$. Additionally, we show that critical points of the corresponding constrained energy functional are naturally associated with standing waves of the evolution problem
We investigate uniqueness of solution to the heat equation with a density $\rho$ on complete, non-compact weighted Riemannian manifolds of infinite volume. Our main goal is to identify sufficient conditions under which the solution $u$ vanishes identically, assuming that $u$ belongs to a certain weighted Lebesgue space with exponential or polynomial weight, $L^p_{\phi}$. We distinguish between the cases $p \gt 1$ and $p = 1$ which required stronger assumptions on the manifold and the density function $\rho$. We develop a unified method based on a conformal transformation of the metric, which allows us to reduce the problem to a standard heat equation on a suitably weighted manifold. In addition, we construct explicit counterexamples on model manifolds which demonstrate optimality of our assumptions on the density $\rho$.
This note establishes sharp time-asymptotic algebraic rate bounds for the classical evolution problem of Fujita, but with sublinear rather than superlinear exponent. A transitional stability exponent is identified, which has a simple reciprocity relation with the classical Fujita critical blow-up exponent.
This paper is concerned with a duality between $r$-regular permutations and $r$-cycle permutations, and a monotone property due to Bóna-McLennan-White on the probability $p_r(n)$ for a random permutation of $\{1,2,\ldots, n\}$ to have an $r$th root, where $r$ is a prime. For $r=2$, the duality relates permutations with odd cycles to permutations with even cycles. For the general case where $r\geq 2$, we define an $r$-enriched permutation as a permutation with $r$-singular cycles coloured by one of the colours $1, 2, \ldots, r-1 $. In this setup, we discover a bijection between $r$-regular permutations and enriched $r$-cycle permutations, which in turn yields a stronger version of an inequality of Bóna-McLennan-White. This leads to a fully combinatorial understanding of the monotone property, thereby answering their question. When $r$ is a prime power $q^l$, we further show that $p_r(n)$ is monotone. In the case that $n+1 \not\equiv 0 \pmod q$, the equality $p_r(n)=p_r(n+1)$ has been established by Chernoff.
We investigate axisymmetric surfaces in Euclidean space that are stationary for the energy $E_\alpha=\int_\Sigma |p|^\alpha\, d\Sigma$. Using a phase plane analysis, we classify these surfaces under the assumption that they intersect the rotation axis orthogonally. We also provide applications of the maximum principle, characterizing closed stationary surfaces and compact stationary surfaces with circular boundary in the case $\alpha=-2$. Finally, we prove that helicoidal stationary surfaces must in fact be rotational surfaces.
The purpose of this work is to develop a version of Forman’s discrete Morse theory for simplicial complexes, based on internal strong collapses. Classical discrete Morse theory can be viewed as a generalization of Whitehead’s collapses, where each Morse function on a simplicial complex $K$ defines a sequence of elementary internal collapses. This reduction guarantees the existence of a CW-complex that is homotopy equivalent to $K$, with cells corresponding to the critical simplices of the Morse function. However, this approach lacks an explicit combinatorial description of the attaching maps, which limits the reconstruction of the homotopy type of $K$. By restricting discrete Morse functions to those induced by total orders on the vertices, we develop a strong discrete Morse theory, generalizing the strong collapses introduced by Barmak and Minian. We show that, in this setting, the resulting reduced CW-complex is regular, enabling us to recover its homotopy type combinatorially. We also provide an algorithm to compute this reduction and apply it to obtain efficient structures for complexes in the library of triangulations by Benedetti and Lutz.
We prove rigidity and gap theorems for self-dual and even Poincaré-Einstein metrics in dimension four. As a corollary, we give an obstruction to the existence of self-dual Poincaré-Einstein metrics in terms of conformal invariants of the boundary and the topology of the bulk. As a by-product of our proof, we identify a new scalar conformal invariant of three-dimensional Riemannian manifolds.
We study a model in which rational agents decide whether or not to commit a crime based on a utility calculation, influenced by a judge who sets a society-wide threshold corresponding to the likelihood of an individual being found guilty and a legislator who sets a society-wide punishment level. We study how the overall crime rate is influenced by the judge’s threshold and the legislator’s punishment level, propose an objective function for the judge and legislator to minimise, and study the optimal threshold and punishment levels for this objective. We then consider the case in which the overall society is subdivided into multiple groups with varying characteristics, introducing a constraint on fairness in treatment between the groups. We study how an optimal threshold and punishment level might be chosen under this fairness constraint, what ramifications the constraints have on outcomes for individuals, and under what circumstances the constrained optimum agrees with the unconstrained optimum.
We study the decay properties of non-negative solutions to the one-dimensional defocusing damped wave equation in the Fujita subcritical case under a specific initial condition. Specifically, we assume that the initial data are positive, satisfy a condition ensuring the positiveness of solutions, and exhibit polynomial decay at infinity. To show the decay properties of the solution, we construct suitable supersolutions composed of an explicit function satisfying an ordinary differential inequality and the solution of the linear damped wave equation. Our estimates correspond to the optimal ones inferred from the analysis of the heat equation.
We prove that for bounded, divergence-free vector fields $\boldsymbol{b}$ in $L^1_{loc}((0,1];BV(\mathbb{T}^d;\mathbb{R}^d))$, there exists a unique incompressible measure on integral curves of $\boldsymbol{b}$. We recall the vector field constructed by Depauw in [8], which lies in the above class, and prove that for this vector field, the unique incompressible measure on integral curves exhibits stochasticity.
In 2013, Andrews and Rose proved that $A_k(q)$ and $C_k(q)$ are quasimodular forms of weight $\leq 2k$. Recently, Ono and Singh proved two interesting identities involving $A_k(q)$ and $C_k(q)$ and showed that the generating functions for the three-coloured partition function $p_3(n)$ and the overpartition function $\overline{p}(n)$ have infinitely many closed formulas in terms of MacMahon’s quasimodular forms $A_k(q)$ and $C_k(q)$. In this paper, we introduce the finite forms $A_{k,n}(q)$ and $C_{k,n}(q)$ of MacMahon’s q-series $A_k(q)$ and $C_k(q)$ and prove two identities which generalize Ono–Singh’s identities. We also prove some new identities involving $A_{k,n}(q)$, $C_{k,n}(q)$ and certain infinite products based on two Bailey pairs. Those identities are analogous to Ono–Singh’s identities.