We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We improve to nearly optimal the known asymptotic and explicit bounds for the number of
$\mathbb {F}_q$
-rational points on a geometrically irreducible hypersurface over a (large) finite field. The proof involves a Bertini-type probabilistic combinatorial technique. Namely, we slice the given hypersurface with a random plane.
Let
$V$
be a finite-dimensional vector space over
$\mathbb{F}_p$
. We say that a multilinear form
$\alpha \colon V^k \to \mathbb{F}_p$
in
$k$
variables is
$d$
-approximately symmetric if the partition rank of difference
$\alpha (x_1, \ldots, x_k) - \alpha (x_{\pi (1)}, \ldots, x_{\pi (k)})$
is at most
$d$
for every permutation
$\pi \in \textrm{Sym}_k$
. In a work concerning the inverse theorem for the Gowers uniformity
$\|\!\cdot\! \|_{\mathsf{U}^4}$
norm in the case of low characteristic, Tidor conjectured that any
$d$
-approximately symmetric multilinear form
$\alpha \colon V^k \to \mathbb{F}_p$
differs from a symmetric multilinear form by a multilinear form of partition rank at most
$O_{p,k,d}(1)$
and proved this conjecture in the case of trilinear forms. In this paper, somewhat surprisingly, we show that this conjecture is false. In fact, we show that approximately symmetric forms can be quite far from the symmetric ones, by constructing a multilinear form
$\alpha \colon \mathbb{F}_2^n \times \mathbb{F}_2^n \times \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2$
which is 3-approximately symmetric, while the difference between
$\alpha$
and any symmetric multilinear form is of partition rank at least
$\Omega (\sqrt [3]{n})$
.
Scale-free percolation is a stochastic model for complex networks. In this spatial random graph model, vertices
$x,y\in\mathbb{Z}^d$
are linked by an edge with probability depending on independent and identically distributed vertex weights and the Euclidean distance
$|x-y|$
. Depending on the various parameters involved, we get a rich phase diagram. We study graph distance and compare it to the Euclidean distance of the vertices. Our main attention is on a regime where graph distances are (poly-)logarithmic in the Euclidean distance. We obtain improved bounds on the logarithmic exponents. In the light tail regime, the correct exponent is identified.
Motivated by a new conjecture on the behavior of bricks, we start a systematic study of minimal
$\tau $
-tilting infinite (min-
$\tau $
-infinite, for short) algebras. In particular, we treat min-
$\tau $
-infinite algebras as a modern counterpart of minimal representation-infinite algebras and show some of the fundamental similarities and differences between these families. We then relate our studies to the classical tilting theory and observe that this modern approach can provide fresh impetus to the study of some old problems. We further show that in order to verify the conjecture, it is sufficient to treat those min-
$\tau $
-infinite algebras where almost all bricks are faithful. Finally, we also prove that minimal extending bricks have open orbits, and consequently obtain a simple proof of the brick analogue of the first Brauer–Thrall conjecture, recently shown by Schroll and Treffinger using some different techniques.
The $q$-coloured Delannoy numbers $D_{n,k}(q)$ count the number of lattice paths from $(0,\,0)$ to $(n,\,k)$ using steps $(0,\,1)$, $(1,\,0)$ and $(1,\,1)$, among which the $(1,\,1)$ steps are coloured with $q$ colours. The focus of this paper is to study some analytical properties of the polynomial matrix $D(q)=[d_{n,k}(q)]_{n,k\geq 0}=[D_{n-k,k}(q)]_{n,k\geq 0}$, such as the strong $q$-log-concavity of polynomial sequences located in a ray or a transversal line of $D(q)$ and the $q$-total positivity of $D(q)$. We show that the zeros of all row sums $R_n(q)=\sum \nolimits _{k=0}^{n}d_{n,k}(q)$ are in $(-\infty,\, -1)$ and are dense in the corresponding semi-closed interval. We also prove that the zeros of all antidiagonal sums $A_n(q)=\sum \nolimits _{k=0}^{\lfloor n/2 \rfloor }d_{n-k,k}(q)$ are in the interval $(-\infty,\, -1]$ and are dense there.
We study multivariate polynomials over ‘structured’ grids. Firstly, we propose an interpretation as to what it means for a finite subset of a field to be structured; we do so by means of a numerical parameter, the nullity. We then extend several results – notably, the Combinatorial Nullstellensatz and the Coefficient Theorem – to polynomials over structured grids. The main point is that the structure of a grid allows the degree constraints on polynomials to be relaxed.
The diamond is the complete graph on four vertices minus one edge; $P_n$ and $C_n$ denote the path and cycle on n vertices, respectively. We prove that the chromatic number of a $(P_6,C_4,\mbox {diamond})$-free graph G is no larger than the maximum of 3 and the clique number of G.
We use tools from free probability to study the spectra of Hermitian operators on infinite graphs. Special attention is devoted to universal covering trees of finite graphs. For operators on these graphs, we derive a new variational formula for the spectral radius and provide new proofs of results due to Sunada and Aomoto using free probability.
With the goal of extending the applicability of free probability techniques beyond universal covering trees, we introduce a new combinatorial product operation on graphs and show that, in the noncommutative probability context, it corresponds to the notion of freeness with amalgamation. We show that Cayley graphs of amalgamated free products of groups, as well as universal covering trees, can be constructed using our graph product.
Strengthening Hadwiger’s conjecture, Gerards and Seymour conjectured in 1995 that every graph with no odd
$K_t$
-minor is properly
$(t-1)$
-colourable. This is known as the Odd Hadwiger’s conjecture. We prove a relaxation of the above conjecture, namely we show that every graph with no odd
$K_t$
-minor admits a vertex
$(2t-2)$
-colouring such that all monochromatic components have size at most
$\lceil \frac{1}{2}(t-2) \rceil$
. The bound on the number of colours is optimal up to a factor of
$2$
, improves previous bounds for the same problem by Kawarabayashi (2008, Combin. Probab. Comput.17 815–821), Kang and Oum (2019, Combin. Probab. Comput.28 740–754), Liu and Wood (2021, arXiv preprint, arXiv:1905.09495), and strengthens a result by van den Heuvel and Wood (2018, J. Lond. Math. Soc.98 129–148), who showed that the above conclusion holds under the more restrictive assumption that the graph is
$K_t$
-minor-free. In addition, the bound on the component-size in our result is much smaller than those of previous results, in which the dependency on
$t$
was given by a function arising from the graph minor structure theorem of Robertson and Seymour. Our short proof combines the method by van den Heuvel and Wood for
$K_t$
-minor-free graphs with some additional ideas, which make the extension to odd
$K_t$
-minor-free graphs possible.
In the past $20$ years, the enumeration of plane lattice walks confined to a convex cone—normalized into the first quadrant—has received a lot of attention, stimulated the development of several original approaches, and led to a rich collection of results. Most of these results deal with the nature of the associated generating function: for which models is it algebraic, D-finite, D-algebraic? By model, what we mean is a finite collection of allowed steps.
More recently, similar questions have been raised for nonconvex cones, typically the three-quadrant cone $\mathcal {C} = \{ (i,j) : i \geq 0 \text { or } j \geq 0 \}$. They turn out to be more difficult than their quadrant counterparts. In this paper, we investigate a collection of eight models in $\mathcal {C}$, which can be seen as the first level of difficulty beyond quadrant problems. This collection consists of diagonally symmetric models in $\{-1, 0,1\}^2\setminus \{(-1,1), (1,-1)\}$. Three of them are known not to be D-algebraic. We show that the remaining five can be solved in a uniform fashion using Tutte’s notion of invariants, which has already proved useful for some quadrant models. Three models are found to be algebraic, one is (only) D-finite, and the last one is (only) D-algebraic. We also solve in the same fashion the diagonal model $\{ \nearrow , \nwarrow , \swarrow , \searrow \}$, which is D-finite. The three algebraic models are those of the Kreweras trilogy, $\mathcal S=\{\nearrow , \leftarrow , \downarrow \}$, $\mathcal S^*=\{\rightarrow , \uparrow , \swarrow \}$, and $\mathcal S\cup \mathcal S^*$.
Our solutions take similar forms for all six models. Roughly speaking, the square of the generating function of three-quadrant walks with steps in $\mathcal S$ is an explicit rational function in the quadrant generating function with steps in $\mathscr S:= \{(j-i,j): (i,j) \in \mathcal S\}$. We derive various exact or asymptotic corollaries, including an explicit algebraic description of a positive harmonic function in $\mathcal C$ for the (reverses of the) five models that are at least D-finite.
In this paper, we study asymmetric Ramsey properties of the random graph
$G_{n,p}$
. Let
$r \in \mathbb{N}$
and
$H_1, \ldots, H_r$
be graphs. We write
$G_{n,p} \to (H_1, \ldots, H_r)$
to denote the property that whenever we colour the edges of
$G_{n,p}$
with colours from the set
$[r] \,{:\!=}\, \{1, \ldots, r\}$
there exists
$i \in [r]$
and a copy of
$H_i$
in
$G_{n,p}$
monochromatic in colour
$i$
. There has been much interest in determining the asymptotic threshold function for this property. In several papers, Rödl and Ruciński determined a threshold function for the general symmetric case; that is, when
$H_1 = \cdots = H_r$
. A conjecture of Kohayakawa and Kreuter from 1997, if true, would fully resolve the asymmetric problem. Recently, the
$1$
-statement of this conjecture was confirmed by Mousset, Nenadov and Samotij.
Building on work of Marciniszyn, Skokan, Spöhel and Steger from 2009, we reduce the
$0$
-statement of Kohayakawa and Kreuter’s conjecture to a certain deterministic subproblem. To demonstrate the potential of this approach, we show this subproblem can be resolved for almost all pairs of regular graphs. This therefore resolves the
$0$
-statement for all such pairs of graphs.
We study the compatibility of the action of the DAHA of type GL with two inverse systems of polynomial rings obtained from the standard Laurent polynomial representations. In both cases, the crucial analysis is that of the compatibility of the action of the Cherednik operators. Each case leads to a representation of a limit structure (the +/– stable limit DAHA) on a space of almost symmetric polynomials in infinitely many variables (the standard representation). As an application, we show that the defining representation of the double Dyck path algebra arises from the standard representation of the +stable limit DAHA.
We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs. The first asserts that any
$d$
-regular graph on
$n$
vertices contains a spanning subgraph in which the number of vertices of each degree between
$0$
and
$d$
deviates from
$\frac{n}{d+1}$
by at most
$2$
. The second is that every graph on
$n$
vertices with minimum degree
$\delta$
contains a spanning subgraph in which the number of vertices of each degree does not exceed
$\frac{n}{\delta +1}+2$
. Both conjectures remain open, but we prove several asymptotic relaxations for graphs with a large number of vertices
$n$
. In particular we show that if
$d^3 \log n \leq o(n)$
then every
$d$
-regular graph with
$n$
vertices contains a spanning subgraph in which the number of vertices of each degree between
$0$
and
$d$
is
$(1+o(1))\frac{n}{d+1}$
. We also prove that any graph with
$n$
vertices and minimum degree
$\delta$
contains a spanning subgraph in which no degree is repeated more than
$(1+o(1))\frac{n}{\delta +1}+2$
times.
For a simple bipartite graph G, we give an upper bound for the regularity of powers of the edge ideal
$I(G)$
in terms of its vertex domination number. Consequently, we explicitly compute the regularity of powers of the edge ideal of a bipartite Kneser graph. Further, we compute the induced matching number of a bipartite Kneser graph.
Let
$\Gamma $
be a graph of valency at least four whose automorphism group contains a minimally vertex-transitive subgroup G. It is proved that
$\Gamma $
admits a nowhere-zero
$3$
-flow if one of the following two conditions holds: (i)
$\Gamma $
is of order twice an odd number and G contains a central involution; (ii) G is a direct product of a
$2$
-subgroup and a subgroup of odd order.
In this note, we correct an oversight regarding the modules from Definition 4.2 and proof of Lemma 5.12 in Baur et al. (Nayoga Math. J., 2020, 240, 322–354). In particular, we give a correct construction of an indecomposable rank
$2$
module
$\operatorname {\mathbb {L}}\nolimits (I,J)$
, with the rank 1 layers I and J tightly
$3$
-interlacing, and we give a correct proof of Lemma 5.12.
We show that the
$4$
-state anti-ferromagnetic Potts model with interaction parameter
$w\in (0,1)$
on the infinite
$(d+1)$
-regular tree has a unique Gibbs measure if
$w\geq 1-\dfrac{4}{d+1_{_{\;}}}$
for all
$d\geq 4$
. This is tight since it is known that there are multiple Gibbs measures when
$0\leq w\lt 1-\dfrac{4}{d+1}$
and
$d\geq 4$
. We moreover give a new proof of the uniqueness of the Gibbs measure for the
$3$
-state Potts model on the
$(d+1)$
-regular tree for
$w\geq 1-\dfrac{3}{d+1}$
when
$d\geq 3$
and for
$w\in (0,1)$
when
$d=2$
.
How many 2-cells must two finite CW-complexes have to admit a common, but not finite common, covering? Leighton’s theorem says that both complexes must have 2-cells. We construct an almost (?) minimal example with two 2-cells in each complex.
The study of threshold functions has a long history in random graph theory. It is known that the thresholds for minimum degree k, k-connectivity, as well as k-robustness coincide for a binomial random graph. In this paper we consider an inhomogeneous random graph model, which is obtained by including each possible edge independently with an individual probability. Based on an intuitive concept of neighborhood density, we show two sufficient conditions guaranteeing k-connectivity and k-robustness, respectively, which are asymptotically equivalent. Our framework sheds some light on extending uniform threshold values in homogeneous random graphs to threshold landscapes in inhomogeneous random graphs.
In 1999, Jacobson and Lehel conjectured that, for
$k \geq 3$
, every k-regular Hamiltonian graph has cycles of
$\Theta (n)$
many different lengths. This was further strengthened by Verstraëte, who asked whether the regularity can be replaced with the weaker condition that the minimum degree is at least
$3$
. Despite attention from various researchers, until now, the best partial result towards both of these conjectures was a
$\sqrt {n}$
lower bound on the number of cycle lengths. We resolve these conjectures asymptotically by showing that the number of cycle lengths is at least
$n^{1-o(1)}$
.