To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current approximation of the Maxwell system becomes large, is important for improving current metal detection technologies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current model also depends on the object topology and on its materials, with the error being much larger for certain geometries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this, we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations to be important when considering objects at greater stand-off distance from the coils, which is important for safety critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We also expect our results to be important when characterising artefacts of archaeological and forensic significance at greater depths than the eddy current model allows and to have further applications parking sensors and improving the detection of hidden, out-of-sight, metallic objects.
A porous material that has been contaminated with a hazardous chemical agent is typically decontaminated by applying a cleanser solution to the surface and allowing the cleanser to react into the porous material, neutralising the agent. The agent and cleanser are often immiscible fluids and so, if the porous material is initially saturated with agent, a reaction front develops with the decontamination reaction occurring at this interface between the fluids. We investigate the effect of different initial agent configurations within the pore space on the decontamination process. Specifically, we compare the decontamination of a material initially saturated by the agent with the situation when, initially, the agent only coats the walls of the pores (referred to as the ‘agent-on-walls’ case). In previous work (Luckins et al., European Journal of Applied Mathematics, 31(5):782–805, 2020), we derived homogenised models for both of these decontamination scenarios, and in this paper we explore the solutions of these two models. We find that, for an identical initial volume of agent, the decontamination time is generally much faster for the agent-on-walls case compared with the initially saturated case, since the surface area on which the reaction can occur is greater. However for sufficiently deep spills of contaminant, or sufficiently slow reaction rates, decontamination in the agent-on-walls scenario can be slower. We also show that, in the limit of a dilute cleanser with a deep initial agent spill, the agent-on-walls model exhibits behaviour akin to a Stefan problem of the same form as that arising in the initially saturated model. The decontamination time is shown to decrease with both the applied cleanser concentration and the rate of the chemical reaction. However, increasing the cleanser concentration is also shown to result in lower decontamination efficiency, with an increase in the amount of cleanser chemical that is wasted.
We consider the problem of controlling the drift and diffusion rate of the endowment processes of two firms such that the joint survival probability is maximized. We assume that the endowment processes are continuous diffusions, driven by independent Brownian motions, and that the aggregate endowment is a Brownian motion with constant drift and diffusion rate. Our results reveal that the maximal joint survival probability depends only on the aggregate risk-adjusted return and on the maximal risk-adjusted return that can be implemented in each firm. Here the risk-adjusted return is understood as the drift rate divided by the squared diffusion rate.
where $-\left (\Delta +\lambda \right )^{\frac {\alpha }{2}}$ is a tempered fractional operator with $\alpha \in (0,2)$ and $\lambda $ is a sufficiently small positive constant. We first establish maximum principle principles for problems involving tempered fractional parabolic operators. And then, we develop the direct sliding methods for the tempered fractional parabolic problem, and discuss how they can be used to establish monotonicity results of solutions to the tempered fractional parabolic problem in various domains. We believe that our theory and methods can be conveniently applied to study parabolic problems involving other nonlocal operators.
We study the existence of large solutions for nonlocal Dirichlet problems posed on a bounded, smooth domain, associated with fully nonlinear elliptic equations of order $2\,s$, with $s\in (1/2,\,1)$, and a coercive gradient term with subcritical power $0< p<2\,s$. Due to the nonlocal nature of the diffusion, new blow-up phenomena arise within the range $0< p<2\,s$, involving a continuum family of solutions and/or solutions blowing-up to $-\infty$ on the boundary. This is in striking difference with the local case studied by Lasry–Lions for the subquadratic case $1< p<2$.
We study homogenization for a class of non-symmetric pure jump Feller processes. The jump intensity involves periodic and aperiodic constituents, as well as oscillating and non-oscillating constituents. This means that the noise can come both from the underlying periodic medium and from external environments, and is allowed to have different scales. It turns out that the Feller process converges in distribution, as the scaling parameter goes to zero, to a Lévy process. As special cases of our result, some homogenization problems studied in previous works can be recovered. We also generalize the approach to the homogenization of symmetric stable-like processes with variable order. Moreover, we present some numerical experiments to demonstrate the usage of our homogenization results in the numerical approximation of first exit times.
Motivated by applications in data science, we study partial differential equations on graphs. By a classical fixed-point argument, we show existence and uniqueness of solutions to a class of nonlocal continuity equations on graphs. We consider general interpolation functions, which give rise to a variety of different dynamics, for example, the nonlocal interaction dynamics coming from a solution-dependent velocity field. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen.
where $0< s_1,s_2<1$, $n>2\max \{s_1,s_2\}$. Nonexistence of anti-symmetric solutions are obtained in some appropriate domains of $(p,q)$ under some corresponding assumptions of $\alpha,\beta$ via the methods of moving spheres and moving planes. Particularly, for the case $s_1=s_2$, one of our results shows that one domain of $(p,q)$, where nonexistence of anti-symmetric solutions with appropriate decay conditions at infinity hold true, locates at above the fractional Sobolev's hyperbola under appropriate condition of $\alpha, \beta$.
This paper is focused on spreading dynamics for a discrete Nicholson's blowflies model with time convolution kernel. This problem arises in the invasive activity of blowflies scattered in discrete spatial environment and has distributed maturated age. We found that for a general convolution kernel, the model can exhibit travelling wave phenomena in a discrete spatial habitat. In particular, we determine the minimal wave speed of travelling waves by deriving the non-existence of travelling waves, and we demonstrate that the minimal wave speed can determine the long time behaviour of solutions with compact initial function. Moreover, we prove that all travelling waves are strictly increasing, which implies that the waveforms remain monotone in the propagation process. Some numerical simulations are also presented to confirm the analytical results.
We consider a class of nonlinear higher-order evolution inequalities posed in $(0,\infty)\times B_1\backslash\{0\}$, subject to inhomogeneous Dirichlet-type boundary conditions, where B1 is the unit ball in $\mathbb{R}^N$. The considered class involves differential operators of the form
where $\mu_1\in \mathbb{R}$ and $\mu_2\geq -\left(\frac{\mu_1-N+2}{2}\right)^2$. Optimal criteria for the nonexistence of weak solutions are established. Our study yields naturally optimal nonexistence results for the corresponding class of elliptic inequalities. Notice that no restriction on the sign of solutions is imposed.
This paper is concerned with the increasing stability of the inverse source problem for the elastic wave equation with attenuation in three dimensions. The stability estimate consists of the Lipschitz type data discrepancy and the high frequency tail of the source function, where the latter decreases as the upper bound of the frequency increases. The stability also shows exponential dependence on the attenuation coefficient. The ingredients of the analysis include Carleman estimates and time decay estimates for the elastic wave equation to obtain an exact observability bound, and the study of the resonance-free region and an upper bound of the resolvent in this region for the elliptic operator with respect to the complex frequency. The advantage of the method developed in this work is that it can be used to study the case of variable attenuation coefficient.
The main objective of this paper is to establish the convergence for the fractional $p$-Laplacian of sequences of nonnegative functions with $p>2$. Furthermore, we show the blow-up phenomena for solutions to the extended Nirenberg problem modelled by fractional $p$-Laplacian with the prescribed negative functions.
This paper concerns the monostable cooperative system with nonlocal diffusion and free boundaries, which has recently been discussed by Du and Ni [J. Differential equations 308(2021) 369-420 and arXiv:2010.01244]. We here aim at four aspects: the first is to give more accurate estimates for the longtime behaviours of the solution; the second is to discuss the limits of solution pair of a semi-wave problem; the third is to investigate the asymptotic behaviours of the corresponding Cauchy problem; the last is to study the limiting profiles of the solution as one of the expanding rates of free boundaries converges to $\infty$. Moreover, some epidemic models are given to illustrate their own rich longtime behaviours, which are quite different from those of the relevant existing works.
In this paper we consider the minimization of a novel class of fractional linear growth functionals involving the Riesz fractional gradient. These functionals lack the coercivity properties in the fractional Sobolev spaces needed to apply the direct method. We therefore utilize the recently introduced spaces of bounded fractional variation and study the extension of the linear growth functional to these spaces through relaxation with respect to the weak* convergence. Our main result establishes an explicit representation for this relaxation, which includes an integral term accounting for the singular part of the fractional variation and features the quasiconvex envelope of the integrand. The role of quasiconvexity in this fractional framework is explained by a technique to switch between the fractional and classical settings. We complement the relaxation result with an existence theory for minimizers of the extended functional.
We study the existence and structure of branch points in two-phase free boundary problems. More precisely, we construct a family of minimizers to an Alt–Caffarelli–Friedman-type functional whose free boundaries contain branch points in the strict interior of the domain. We also give an example showing that branch points in the free boundary of almost-minimizers of the same functional can have very little structure. This last example stands in contrast with recent results of De Philippis, Spolaor and Velichkov on the structure of branch points in the free boundary of stationary solutions.
Finite element methods developed for unfitted meshes have been widely applied to various interface problems. However, many of them resort to non-conforming spaces for approximation, which is a critical obstacle for the extension to $\textbf{H}(\text{curl})$ equations. This essential issue stems from the underlying Sobolev space $\textbf{H}^s(\text{curl};\,\Omega)$, and even the widely used penalty methodology may not yield the optimal convergence rate. One promising approach to circumvent this issue is to use a conforming test function space, which motivates us to develop a Petrov–Galerkin immersed finite element (PG-IFE) method for $\textbf{H}(\text{curl})$-elliptic interface problems. We establish the Nédélec-type IFE spaces and develop some important properties including their edge degrees of freedom, an exact sequence relating to the $H^1$ IFE space and optimal approximation capabilities. We analyse the inf-sup condition under certain assumptions and show the optimal convergence rate, which is also validated by numerical experiments.
Let $\sigma \in (0,\,2)$, $\chi ^{(\sigma )}(y):={\mathbf 1}_{\sigma \in (1,2)}+{\mathbf 1}_{\sigma =1} {\mathbf 1}_{y\in B(\mathbf {0},\,1)}$, where $\mathbf {0}$ denotes the origin of $\mathbb {R}^n$, and $a$ be a non-negative and bounded measurable function on $\mathbb {R}^n$. In this paper, we obtain the boundedness of the non-local elliptic operator
from the Sobolev space based on $\mathrm {BMO}(\mathbb {R}^n)\cap (\bigcup _{p\in (1,\infty )}L^p(\mathbb {R}^n))$ to the space $\mathrm {BMO}(\mathbb {R}^n)$, and from the Sobolev space based on the Hardy space $H^1(\mathbb {R}^n)$ to $H^1(\mathbb {R}^n)$. Moreover, for any $\lambda \in (0,\,\infty )$, we also obtain the unique solvability of the non-local elliptic equation $Lu-\lambda u=f$ in $\mathbb {R}^n$, with $f\in \mathrm {BMO}(\mathbb {R}^n)\cap (\bigcup _{p\in (1,\infty )}L^p(\mathbb {R}^n))$ or $H^1(\mathbb {R}^n)$, in the Sobolev space based on $\mathrm {BMO}(\mathbb {R}^n)$ or $H^1(\mathbb {R}^n)$. The boundedness and unique solvability results given in this paper are further devolvement for the corresponding results in the scale of the Lebesgue space $L^p(\mathbb {R}^n)$ with $p\in (1,\,\infty )$, established by H. Dong and D. Kim [J. Funct. Anal. 262 (2012), 1166–1199], in the endpoint cases of $p=1$ and $p=\infty$.
In this paper, we consider the existence and stability of singular patterns in a fractional Ginzburg–Landau equation with a mean field. We prove the existence of three types of singular steady-state patterns (double fronts, single spikes, and double spikes) by solving their respective consistency conditions. In the case of single spikes, we prove the stability of single small spike solution for sufficiently large spatial period by studying an explicit non-local eigenvalue problem which is equivalent to the original eigenvalue problem. For the other solutions, we prove the instability by using the variational characterisation of eigenvalues. Finally, we present the results of some numerical computations of spike solutions based on the finite difference methods of Crank–Nicolson and Adams–Bashforth.