To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate an inverse boundary value problem of determination of a nonlinear law for reaction-diffusion processes, which are modeled by general form semilinear parabolic equations. We do not assume that any solutions to these equations are known a priori, in which case the problem has a well-known gauge symmetry. We determine, under additional assumptions, the semilinear term up to this symmetry in a time-dependent anisotropic case modeled on Riemannian manifolds, and for partial data measurements on ${\mathbb R}^n$.
Moreover, we present cases where it is possible to exploit the nonlinear interaction to break the gauge symmetry. This leads to full determination results of the nonlinear term. As an application, we show that it is possible to give a full resolution to classes of inverse source problems of determining a source term and nonlinear terms simultaneously. This is in strict contrast to inverse source problems for corresponding linear equations, which always have the gauge symmetry. We also consider a Carleman estimate with boundary terms based on intrinsic properties of parabolic equations.
We present necessary and sufficient conditions for an operator of the type sum of squares to be globally hypoelliptic on $T \times G$, where T is a compact Riemannian manifold and G is a compact Lie group. These conditions involve the global hypoellipticity of a system of vector fields on G and are weaker than Hörmander’s condition, while generalizing the well known Diophantine conditions on the torus. Examples of operators satisfying these conditions in the general setting are provided.
We consider Calderón's problem for the connection Laplacian on a real-analytic vector bundle over a manifold with boundary. We prove a uniqueness result for this problem when all geometric data are real-analytic, recovering the topology and geometry of a vector bundle up to a gauge transformation and an isometry of the base manifold.
In this paper, we study the Dirichlet problem for systems of mean value equations on a regular tree. We deal both with the directed case (the equations verified by the components of the system at a node in the tree only involve values of the unknowns at the successors of the node in the tree) and the undirected case (now the equations also involve the predecessor in the tree). We find necessary and sufficient conditions on the coefficients in order to have existence and uniqueness of solutions for continuous boundary data. In a particular case, we also include an interpretation of such solutions as a limit of value functions of suitable two-players zero-sum games.
In Chen and Liang previous work, a model, together with its well-posedness, was established for credit rating migrations with different upgrade and downgrade thresholds (i.e. a buffer zone, also called dead band in engineering). When positive dividends are introduced, the model in Chen and Liang (SIAM Financ. Math. 12, 941–966, 2021) may not be well-posed. Here, in this paper, a new model is proposed to include the realistic nonzero dividend scenarios. The key feature of the new model is that partial differential equations in Chen and Liang (SIAM Financ. Math. 12, 941–966, 2021) are replaced by variational inequalities, thereby creating a new free boundary, besides the original upgrading and downgrading free boundaries. Well-posedness of the new model, together with a few financially meaningful properties, is established. In particular, it is shown that when time to debt paying deadline is long enough, the underlying dividend paying company is always in high grade rating, that is, only when time to debt paying deadline is within a certain range, there can be seen the phenomenon of credit rating migration.
Let $G=(V, E)$ be a locally finite graph with the vertex set V and the edge set E, where both V and E are infinite sets. By dividing the graph G into a sequence of finite subgraphs, the existence of a sequence of local solutions to several equations involving the p-Laplacian and the poly-Laplacian systems is confirmed on each subgraph, and the global existence for each equation on graph G is derived by the convergence of these local solutions. Such results extend the recent work of Grigor’yan, Lin and Yang [J. Differential Equations, 261 (2016), 4924–4943; Rev. Mat. Complut., 35 (2022), 791–813]. The method in this paper also provides an idea for investigating similar problems on infinite graphs.
We prove that for a homogeneous linear partial differential operator $\mathcal {A}$ of order $k \le 2$ and an integrable map $f$ taking values in the essential range of that operator, there exists a function $u$ of special bounded variation satisfying
This extends a result of G. Alberti for gradients on $\mathbf {R}^N$. In particular, for $0 \le m < N$, it is shown that every integrable $m$-vector field is the absolutely continuous part of the boundary of a normal $(m+1)$-current.
This paper is concerned with a nonlocal reaction–diffusion system with double free boundaries and two time delays. The free boundary problem describes the evolution of faecally–orally transmitted diseases. We first show the well-posedness of global solution, and then establish the monotonicity and asymptotic property of basic reproduction number for the epidemic model without delays, which is defined by spectral radius of the next infection operator. By introducing the generalized principal eigenvalue defined in general domain, we obtain an upper bound of the limit value of basic reproduction number. We discuss the spreading and vanishing phenomena in terms of the basic production number. By employing the perturbed approximation method and monotone iteration method, we establish the existence, uniqueness and monotonicity of solution to semi-wave problem. When spreading occurs, we determine the asymptotic spreading speeds of free boundaries by constructing suitable upper and lower solutions from the semi-wave solutions. Moreover, spreading speeds for partially degenerate diffusion case are provided in a similar way.
In this work, we study an elliptic problem involving an operator of mixed order with both local and nonlocal aspects, and in either the presence or the absence of a singular nonlinearity. We investigate existence or nonexistence properties, power- and exponential-type Sobolev regularity results, and the boundary behaviour of the weak solution, in the light of the interplay between the summability of the datum and the power exponent in singular nonlinearities.
We establish new local and global estimates for evolutionary partial differential equations in classical Banach and quasi-Banach spaces that appear most frequently in the theory of partial differential equations. More specifically, we obtain optimal (local in time) estimates for the solution to the Cauchy problem for variable-coefficient evolutionary partial differential equations. The estimates are achieved by introducing the notions of Schrödinger and general oscillatory integral operators with inhomogeneous phase functions and prove sharp local and global regularity results for these in Besov–Lipschitz and Triebel–Lizorkin spaces.
A delayed reaction-diffusion system with free boundaries is investigated in this paper to understand how the bacteria spread spatially to larger area from the initial infected habitat. Under the assumptions that the nonlinearities are of monostable type and the initial values satisfy some compatible condition, we show that the free boundary problem is well-posed and discuss the long-time behaviour of solution (including spreading and vanishing) in terms of the spatial-temporal risk index. Furthermore, to determine the spreading speed of free boundaries when spreading occurs, we first study the distribution of roots of a transcendental equation containing a polynomial of degree four and then establish the existence and uniqueness of monotone solution to a delay-induced nonlocal semi-wave problem by employing the approximation method, lower-upper solutions technique and Schauder fixed point theorem. It is shown that time delays slow down the spreading of bacteria.
Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current approximation of the Maxwell system becomes large, is important for improving current metal detection technologies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current model also depends on the object topology and on its materials, with the error being much larger for certain geometries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this, we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations to be important when considering objects at greater stand-off distance from the coils, which is important for safety critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We also expect our results to be important when characterising artefacts of archaeological and forensic significance at greater depths than the eddy current model allows and to have further applications parking sensors and improving the detection of hidden, out-of-sight, metallic objects.
A porous material that has been contaminated with a hazardous chemical agent is typically decontaminated by applying a cleanser solution to the surface and allowing the cleanser to react into the porous material, neutralising the agent. The agent and cleanser are often immiscible fluids and so, if the porous material is initially saturated with agent, a reaction front develops with the decontamination reaction occurring at this interface between the fluids. We investigate the effect of different initial agent configurations within the pore space on the decontamination process. Specifically, we compare the decontamination of a material initially saturated by the agent with the situation when, initially, the agent only coats the walls of the pores (referred to as the ‘agent-on-walls’ case). In previous work (Luckins et al., European Journal of Applied Mathematics, 31(5):782–805, 2020), we derived homogenised models for both of these decontamination scenarios, and in this paper we explore the solutions of these two models. We find that, for an identical initial volume of agent, the decontamination time is generally much faster for the agent-on-walls case compared with the initially saturated case, since the surface area on which the reaction can occur is greater. However for sufficiently deep spills of contaminant, or sufficiently slow reaction rates, decontamination in the agent-on-walls scenario can be slower. We also show that, in the limit of a dilute cleanser with a deep initial agent spill, the agent-on-walls model exhibits behaviour akin to a Stefan problem of the same form as that arising in the initially saturated model. The decontamination time is shown to decrease with both the applied cleanser concentration and the rate of the chemical reaction. However, increasing the cleanser concentration is also shown to result in lower decontamination efficiency, with an increase in the amount of cleanser chemical that is wasted.
We consider the problem of controlling the drift and diffusion rate of the endowment processes of two firms such that the joint survival probability is maximized. We assume that the endowment processes are continuous diffusions, driven by independent Brownian motions, and that the aggregate endowment is a Brownian motion with constant drift and diffusion rate. Our results reveal that the maximal joint survival probability depends only on the aggregate risk-adjusted return and on the maximal risk-adjusted return that can be implemented in each firm. Here the risk-adjusted return is understood as the drift rate divided by the squared diffusion rate.
where $-\left (\Delta +\lambda \right )^{\frac {\alpha }{2}}$ is a tempered fractional operator with $\alpha \in (0,2)$ and $\lambda $ is a sufficiently small positive constant. We first establish maximum principle principles for problems involving tempered fractional parabolic operators. And then, we develop the direct sliding methods for the tempered fractional parabolic problem, and discuss how they can be used to establish monotonicity results of solutions to the tempered fractional parabolic problem in various domains. We believe that our theory and methods can be conveniently applied to study parabolic problems involving other nonlocal operators.
We study the existence of large solutions for nonlocal Dirichlet problems posed on a bounded, smooth domain, associated with fully nonlinear elliptic equations of order $2\,s$, with $s\in (1/2,\,1)$, and a coercive gradient term with subcritical power $0< p<2\,s$. Due to the nonlocal nature of the diffusion, new blow-up phenomena arise within the range $0< p<2\,s$, involving a continuum family of solutions and/or solutions blowing-up to $-\infty$ on the boundary. This is in striking difference with the local case studied by Lasry–Lions for the subquadratic case $1< p<2$.
We study homogenization for a class of non-symmetric pure jump Feller processes. The jump intensity involves periodic and aperiodic constituents, as well as oscillating and non-oscillating constituents. This means that the noise can come both from the underlying periodic medium and from external environments, and is allowed to have different scales. It turns out that the Feller process converges in distribution, as the scaling parameter goes to zero, to a Lévy process. As special cases of our result, some homogenization problems studied in previous works can be recovered. We also generalize the approach to the homogenization of symmetric stable-like processes with variable order. Moreover, we present some numerical experiments to demonstrate the usage of our homogenization results in the numerical approximation of first exit times.
Motivated by applications in data science, we study partial differential equations on graphs. By a classical fixed-point argument, we show existence and uniqueness of solutions to a class of nonlocal continuity equations on graphs. We consider general interpolation functions, which give rise to a variety of different dynamics, for example, the nonlocal interaction dynamics coming from a solution-dependent velocity field. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen.
where $0< s_1,s_2<1$, $n>2\max \{s_1,s_2\}$. Nonexistence of anti-symmetric solutions are obtained in some appropriate domains of $(p,q)$ under some corresponding assumptions of $\alpha,\beta$ via the methods of moving spheres and moving planes. Particularly, for the case $s_1=s_2$, one of our results shows that one domain of $(p,q)$, where nonexistence of anti-symmetric solutions with appropriate decay conditions at infinity hold true, locates at above the fractional Sobolev's hyperbola under appropriate condition of $\alpha, \beta$.