To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Omega \subset \mathbb {R}^N$, $N\geq 2$, be an open bounded connected set. We consider the fractional weighted eigenvalue problem $(-\Delta )^s u =\lambda \rho u$ in $\Omega $ with homogeneous Dirichlet boundary condition, where $(-\Delta )^s$, $s\in (0,1)$, is the fractional Laplacian operator, $\lambda \in \mathbb {R}$ and $ \rho \in L^\infty (\Omega )$.
We study weak* continuity, convexity and Gâteaux differentiability of the map $\rho \mapsto 1/\lambda _1(\rho )$, where $\lambda _1(\rho )$ is the first positive eigenvalue. Moreover, denoting by $\mathcal {G}(\rho _0)$ the class of rearrangements of $\rho _0$, we prove the existence of a minimizer of $\lambda _1(\rho )$ when $\rho $ varies on $\mathcal {G}(\rho _0)$. Finally, we show that, if $\Omega $ is Steiner symmetric, then every minimizer shares the same symmetry.
In this paper, we consider the monotone travelling wave solutions of a reaction–diffusion epidemic system with nonlocal delays. We obtain the existence of monotone travelling wave solutions by applying abstract existence results. By transforming the nonlocal delayed system to a non-delayed system and choosing suitable small positive constants to define a pair of new upper and lower solutions, we use the contraction technique to prove the asymptotic stability (up to translation) of monotone travelling waves. Furthermore, the uniqueness and Lyapunov stability of monotone travelling wave solutions will be established with the help of the upper and lower solution method and the exponential asymptotic stability.
where 0 < γ < 1, λ > 0 and 0 < s ≤ t < 1 with 4s + 2t > 3. Under certain assumptions on V and f, we show the existence, uniqueness, and monotonicity of positive solution uλ using the variational method. We also give a convergence property of uλ as λ → 0, when λ is regarded as a positive parameter.
We study the problem of stopping a Brownian bridge X in order to maximise the expected value of an exponential gain function. The problem was posed by Ernst and Shepp (2015), and was motivated by bond selling with non-negative prices.
Due to the non-linear structure of the exponential gain, we cannot rely on methods used in the literature to find closed-form solutions to other problems involving the Brownian bridge. Instead, we must deal directly with a stopping problem for a time-inhomogeneous diffusion. We develop techniques based on pathwise properties of the Brownian bridge and martingale methods of optimal stopping theory, which allow us to find the optimal stopping rule and to show the regularity of the value function.
where σD is a modulus of continuity defined in the interval [0, |D|] and depends only on the domain D. The inequality is optimal for any domain D and for any values of $\|f\|_1$ and $\|f\|_\infty .$ We also show that
\sigma_D(t)\leq\sigma_B(t),\text{ for }t\in[0,|D|],
where B is a ball and |B| = |D|. Using this optimality property of σD, we derive Brezis–Galloute–Wainger type inequalities on the L∞ norm of u in terms of the L1 and L∞ norms of f. As an application we derive L∞ − L1 estimates on the k-th Laplace eigenfunction of the domain D.
Suppose that $G=(V,E)$ is a finite graph with the vertex set $V$ and the edge set $E$. Let $\unicode[STIX]{x1D6E5}$ be the usual graph Laplacian. Consider the nonlinear Schrödinger equation of the form
on the graph $G$, where $f(x,u):V\times \mathbb{R}\rightarrow \mathbb{R}$ is a nonlinear real-valued function and $\unicode[STIX]{x1D6FC}$ is a parameter. We prove an integral inequality on $G$ under the assumption that $G$ satisfies the curvature-dimension type inequality $CD(m,\unicode[STIX]{x1D709})$. Then by using the Poincaré–Sobolev inequality, the Trudinger–Moser inequality and the integral inequality on $G$, we prove that there is a nontrivial solution to the nonlinear Schrödinger equation if $\unicode[STIX]{x1D6FC}<2\unicode[STIX]{x1D706}_{1}^{2}/m(\unicode[STIX]{x1D706}_{1}-\unicode[STIX]{x1D709})$, where $\unicode[STIX]{x1D706}_{1}$ is the first positive eigenvalue of the graph Laplacian.
where λ > 0 is a real parameter, f belongs to a suitable Lebesgue space, $\mu \in L^{\infty}$ and $\mathbb {D}_s^2$ is a nonlocal ‘gradient square’ term given by
Depending on the real parameter λ > 0, we derive existence and non-existence results. The proof of our existence result relies on sharp Calderón–Zygmund type regularity results for the fractional Poisson equation with low integrability data. We also obtain existence results for related problems involving different nonlocal diffusion terms.
We develop in this work a general version of paracontrolled calculus that allows to treat analytically within this paradigm a whole class of singular partial differential equations with the same efficiency as regularity structures. This work deals with the analytic side of the story and offers a toolkit for the study of such equations, under the form of a number of continuity results for some operators, while emphasizing the simple and systematic mechanics of computations within paracontrolled calculus, via the introduction of two model operations $\mathsf{E}$ and $\mathsf{F}$. We illustrate the efficiency of this elementary approach on the example of the generalized parabolic Anderson model equation
We prove that an $L^{\infty }$ potential in the Schrödinger equation in three and higher dimensions can be uniquely determined from a finite number of boundary measurements, provided it belongs to a known finite dimensional subspace ${\mathcal{W}}$. As a corollary, we obtain a similar result for Calderón’s inverse conductivity problem. Lipschitz stability estimates and a globally convergent nonlinear reconstruction algorithm for both inverse problems are also presented. These are the first results on global uniqueness, stability and reconstruction for nonlinear inverse boundary value problems with finitely many measurements. We also discuss a few relevant examples of finite dimensional subspaces ${\mathcal{W}}$, including bandlimited and piecewise constant potentials, and explicitly compute the number of required measurements as a function of $\dim {\mathcal{W}}$.
This paper deals with the periodic homogenization of nonlocal parabolic Hamilton–Jacobi equations with superlinear growth in the gradient terms. We show that the problem presents different features depending on the order of the nonlocal operator, giving rise to three different cell problems and effective operators. To prove the locally uniform convergence to the unique solution of the Cauchy problem for the effective equation we need a new comparison principle among viscosity semi-solutions of integrodifferential equations that can be of independent interest.
where n ⩾ 2, 0 < α, β < 2, a> −α, b > −β and p, q ⩾ 1. By exploiting a direct method of scaling spheres for fractional systems, we prove that if $p \leqslant \frac {n+\alpha +2a}{n-\beta }$, $q \leqslant \frac {n+\beta +2b}{n-\alpha }$, $p+q<\frac {n+\alpha +2a}{n-\beta }+\frac {n+\beta +2b}{n-\alpha }$ and (u, v) is a nonnegative strong solution of the system, then u ≡ v ≡ 0.
Two mathematical models under so-called intensity and structure frameworks to pricing a double defaultable interest rate swap are established. The default could happen or jump to a high probability in both fixed and floating parties on the predetermined boundaries. The models lead to a new and interesting mathematical problem. As the intensity approaches infinity in designated regions, the solutions of the intensity models converge to a solution of a structure-type model which is an initial value problem of a partial differential equation coupled with two obstacles problem in their restricted regions. According to the value of the fixed rate, three cases are discussed. The free boundary that determines the swap rate and the free boundaries that determine the earlier termination of the contract (due to counterparty’s default) are analysed.
The aim of this paper is to provide and numerically test in the presence of measurement noise a procedure for target classification in wave imaging based on comparing frequency-dependent distribution descriptors with precomputed ones in a dictionary of learned distributions. Distribution descriptors for inhomogeneous objects are obtained from the scattering coefficients. First, we extract the scattering coefficients of the (inhomogeneous) target from the perturbation of the reflected waves. Then, for a collection of inhomogeneous targets, we build a frequency-dependent dictionary of distribution descriptors and use a matching algorithm in order to identify a target from the dictionary up to some translation, rotation and scaling.
We study a free boundary problem of the form: ut = uxx + f(t, u) (g(t) < x < h(t)) with free boundary conditions h′(t) = −ux(t, h(t)) – α(t) and g′(t) = −ux(t, g(t)) + β(t), where β(t) and α(t) are positive T-periodic functions, f(t, u) is a Fisher–KPP type of nonlinearity and T-periodic in t. This problem can be used to describe the spreading of a biological or chemical species in time-periodic environment, where free boundaries represent the spreading fronts of the species. We study the asymptotic behaviour of bounded solutions. There are two T-periodic functions α0(t) and α*(t; β) with 0 < α0 < α* which play key roles in the dynamics. More precisely, (i) in case 0 < β< α0 and 0 < α < α*, we obtain a trichotomy result: (i-1) spreading, that is, h(t) – g(t) → +∞ and u(t, ⋅ + ct) → 1 with $c\in (-\overline{l},\overline{r})$, where $ \overline{l}:=\frac{1}{T}\int_{0}^{T}l(s)ds$, $\overline{r}:=\frac{1}{T}\int_{0}^{T}r(s)ds$, the T-periodic functions −l(t) and r(t) are the asymptotic spreading speeds of g(t) and h(t) respectively (furthermore, r(t) > 0 > −l(t) when 0 < β < α < α0; r(t) = 0 > −l(t) when 0 < β < α = α0; $0 \gt \overline{r} \gt -\overline{l}$ when 0 < β < α0 < α < α*); (i-2) vanishing, that is, $\lim\limits_{t \to \mathcal {T}}h(t) = \lim\limits_{t \to \mathcal {T}}g(t)$ and $\lim\limits_{t \to \mathcal {T}}\max\limits_{g(t)\leq x\leq h(t)} u(t,x)=0$, where $\mathcal {T}$ is some positive constant; (i-3) transition, that is, g(t) → −∞, h(t) → −∞, $0<\lim\limits_{t \to \infty}[h(t)-g(t)] \lt +\infty$ and u(t, ⋅) → V(t, ⋅), where V is a T-periodic solution with compact support. (ii) in case β ≥ α0 or α ≥ α*, vanishing happens for any solution.
We study the existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Results on the existence of almost periodic-type solutions (including, periodic, almost periodic, asymptotically almost periodic and almost automorphic solutions) are proved. Some examples of partial differential equations with state-dependent delay arising in population dynamics are presented.
We analyse the effect of random initial conditions on the local well-posedness of semi-linear PDEs, to investigate to what extent recent ideas on singular stochastic PDEs can prove useful in this framework.
In particular, in some cases, stochastic initial conditions extend the validity of the fixed-point argument to larger spaces than deterministic initial conditions would allow, but in general, it is never possible to go beyond the threshold that is predicted by critical scaling, as in our general class of equations we are not exploiting any special structure present in the equation.
We also give a specific example where the level of regularity for the fixed-point argument reached by random initial conditions is not yet critical, but it is already sharp in the sense that we find infinitely many random initial conditions of slightly lower regularity, where there is no solution at all. Thus criticality cannot be reached even by random initial conditions.
The existence and uniqueness in a critical space is always delicate, but we can consider the Burgers equation in logarithmically sub-critical spaces, where existence and uniqueness hold, and again random initial conditions allow to extend the validity to spaces of lower regularity which are still logarithmically sub-critical.
where the function a(x, t, ξ) satisfies (p, q)-growth conditions. We give an a priori estimate for weak solutions in the case of possibly discontinuous coefficients. More precisely, the partial maps $x\mapsto a(x,t,\xi )$ under consideration may not be continuous, but may only possess a Sobolev-type regularity. In a certain sense, our assumption means that the weak derivatives $D_xa(\cdot ,\cdot ,\xi )$ are contained in the class $L^\alpha (0,T;L^\beta (\Omega ))$, where the integrability exponents $\alpha ,\beta $ are coupled by
for some κ ∈ (0,1). For the gap between the two growth exponents we assume
$$2 \les p < q \les p + \displaystyle{{2\kappa } \over {n + 2}}.$$
Under further assumptions on the integrability of the spatial gradient, we prove a result on higher differentiability in space as well as the existence of a weak time derivative $u_t\in L^{p/(q-1)}_{{\rm loc}}(\Omega _T)$. We use the corresponding a priori estimate to deduce the existence of solutions of Cauchy–Dirichlet problems with the mentioned higher differentiability property.
We prove that the fractional Yamabe equation ${\rm {\cal L}}_\gamma u = \vert u \vert ^{((4\gamma )/(Q-2\gamma ))}u$ on the Heisenberg group ℍn has [n + 1/2] sequences of nodal (sign-changing) weak solutions whose elements have mutually different nodal properties, where ${\rm {\cal L}}_\gamma $ denotes the CR fractional sub-Laplacian operator on ℍn, Q = 2n + 2 is the homogeneous dimension of ℍn, and $\gamma \in \bigcup\nolimits_{k = 1}^n [k,((kQ)/Q-1)))$. Our argument is variational, based on a Ding-type conformal pulling-back transformation of the original problem into a problem on the CR sphere S2n + 1 combined with a suitable Hebey-Vaugon-type compactness result and group-theoretical constructions for special subgroups of the unitary group U(n + 1).
We present some comparison results for solutions to certain non-local elliptic and parabolic problems that involve the fractional Laplacian operator and mixed boundary conditions, given by a zero Dirichlet datum on part of the complementary of the domain and zero Neumann data on the rest. These results represent a non-local generalization of a Hopf's lemma for elliptic and parabolic problems with mixed conditions. In particular we prove the non-local version of the results obtained by Dávila and Dávila and Dupaigne for the classical case s = 1 in [23, 24] respectively.
where $\tau :{\open R}^n\to {\open R}^n$ is a general function. In particular, for the linear choices $\tau (x)=0$, $\tau (x)=x$ and $\tau (x)={x}/{2}$ this covers the well-known Kohn–Nirenberg, anti-Kohn–Nirenberg and Weyl quantizations, respectively. Quantizations of such type appear naturally in the analysis on nilpotent Lie groups for polynomial functions τ and here we investigate the corresponding calculus in the model case of ${\open R}^n$. We also give examples of nonlinear τ appearing on the polarized and non-polarized Heisenberg groups.