To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the explicit solution to the axisymmetric diffusion equation. We recast the solution in the form of a Mellin inversion formula, and outline a method to compute a formula for $u(r,t)$ as a series using the Cauchy residue theorem. As a consequence, we are able to represent the solution to the axisymmetric diffusion equation as a rapidly converging series.
We consider a model for the dynamics of growing cell populations with heterogeneous mobility and proliferation rate. The cell phenotypic state is described by a continuous structuring variable and the evolution of the local cell population density function (i.e. the cell phenotypic distribution at each spatial position) is governed by a non-local advection–reaction–diffusion equation. We report on the results of numerical simulations showing that, in the case where the cell mobility is bounded, compactly supported travelling fronts emerge. More mobile phenotypic variants occupy the front edge, whereas more proliferative phenotypic variants are selected at the back of the front. In order to explain such numerical results, we carry out formal asymptotic analysis of the model equation using a Hamilton–Jacobi approach. In summary, we show that the locally dominant phenotypic trait (i.e. the maximum point of the local cell population density function along the phenotypic dimension) satisfies a generalised Burgers’ equation with source term, we construct travelling-front solutions of such transport equation and characterise the corresponding minimal speed. Moreover, we show that, when the cell mobility is unbounded, front edge acceleration and formation of stretching fronts may occur. We briefly discuss the implications of our results in the context of glioma growth.
This paper is concerned with the asymptotic propagations for a nonlocal dispersal population model with shifting habitats. In particular, we verify that the invading speed of the species is determined by the speed c of the shifting habitat edge and the behaviours near infinity of the species’ growth rate which is nondecreasing along the positive spatial direction. In the case where the species declines near the negative infinity, we conclude that extinction occurs if c > c*(∞), while c < c*(∞), spreading happens with a leftward speed min{−c, c*(∞)} and a rightward speed c*(∞), where c*(∞) is the minimum KPP travelling wave speed associated with the species’ growth rate at the positive infinity. The same scenario will play out for the case where the species’ growth rate is zero at negative infinity. In the case where the species still grows near negative infinity, we show that the species always survives ‘by moving’ with the rightward spreading speed being either c*(∞) or c*(−∞) and the leftward spreading speed being one of c*(∞), c*(−∞) and −c, where c*(−∞) is the minimum KPP travelling wave speed corresponding to the growth rate at the negative infinity. Finally, we give some numeric simulations and discussions to present and explain the theoretical results. Our results indicate that there may exists a solution like a two-layer wave with the propagation speeds analytically determined for such type of nonlocal dispersal equations.
An advanced pantograph-type partial differential equation, supplemented with initial and boundary conditions, arises in a model of asymmetric cell division. Methods for solving such problems are limited owing to functional (nonlocal) terms. The separation of variables entails an eigenvalue problem that involves a nonlocal ordinary differential equation. We discuss plausible eigenvalues that may yield nontrivial solutions to the problem for certain choices of growth and division rates of cells. We also consider the asymmetric division of cells with linear growth rate which corresponds to “exponential growth” and exponential rate of cell division, and show that the solution to the problem is a certain Dirichlet series. The distribution of the first moment of the biomass is shown to be unimodal.
We study the multiplicity and concentration of complex-valued solutions for a fractional magnetic Schrödinger equation involving a scalar continuous electric potential satisfying a local condition and a continuous nonlinearity with subcritical growth. The main results are obtained by applying a penalization technique, generalized Nehari manifold method and Ljusternik–Schnirelman theory. We also prove a Kato's inequality for the fractional magnetic Laplacian which we believe to be useful in the study of other fractional magnetic problems.
An emerging technique in image segmentation, semi-supervised learning and general classification problems concerns the use of phase-separating flows defined on finite graphs. This technique was pioneered in Bertozzi and Flenner (2012, Multiscale Modeling and Simulation10(3), 1090–1118), which used the Allen–Cahn flow on a graph, and was then extended in Merkurjev et al. (2013, SIAM J. Imaging Sci.6(4), 1903–1930) using instead the Merriman–Bence–Osher (MBO) scheme on a graph. In previous work by the authors, Budd and Van Gennip (2020, SIAM J. Math. Anal.52(5), 4101–4139), we gave a theoretical justification for this use of the MBO scheme in place of Allen–Cahn flow, showing that the MBO scheme is a special case of a ‘semi-discrete’ numerical scheme for Allen–Cahn flow. In this paper, we extend this earlier work, showing that this link via the semi-discrete scheme is robust to passing to the mass-conserving case. Inspired by Rubinstein and Sternberg (1992, IMA J. Appl. Math.48, 249–264), we define a mass-conserving Allen–Cahn equation on a graph. Then, with the help of the tools of convex optimisation, we show that our earlier machinery can be applied to derive the mass-conserving MBO scheme on a graph as a special case of a semi-discrete scheme for mass-conserving Allen–Cahn. We give a theoretical analysis of this flow and scheme, proving various desired properties like existence and uniqueness of the flow and convergence of the scheme, and also show that the semi-discrete scheme yields a choice function for solutions to the mass-conserving MBO scheme.
In this paper we study various aspects of porosities for conformal fractals. We first explore porosity in the general context of infinite graph directed Markov systems (GDMS), and we show that their limit sets are porous in large (in the sense of category and dimension) subsets. We also provide natural geometric and dynamic conditions under which the limit set of a GDMS is upper porous or mean porous. On the other hand, we prove that if the limit set of a GDMS is not porous, then it is not porous almost everywhere. We also revisit porosity for finite graph directed Markov systems, and we provide checkable criteria which guarantee that limit sets have holes of relative size at every scale in a prescribed direction.
We then narrow our focus to systems associated to complex continued fractions with arbitrary alphabet and we provide a novel characterisation of porosity for their limit sets. Moreover, we introduce the notions of upper density and upper box dimension for subsets of Gaussian integers and we explore their connections to porosity. As applications we show that limit sets of complex continued fractions system whose alphabet is co-finite, or even a co-finite subset of the Gaussian primes, are not porous almost everywhere, while they are uniformly upper porous and mean porous almost everywhere.
We finally turn our attention to complex dynamics and we delve into porosity for Julia sets of meromorphic functions. We show that if the Julia set of a tame meromorphic function is not the whole complex plane then it is porous at a dense set of its points and it is almost everywhere mean porous with respect to natural ergodic measures. On the other hand, if the Julia set is not porous then it is not porous almost everywhere. In particular, if the function is elliptic we show that its Julia set is not porous at a dense set of its points.
We show existence and uniqueness of solutions to an initial boundary value problem that entails a pantograph type functional partial differential equation with two advanced nonlocal terms. The problem models cell growth and division into two daughter cells of different sizes. There is a paucity of information about the solution to the problem for an arbitrary initial cell distribution.
We present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.
We establish the global regularity of multilinear Fourier integral operators that are associated to nonlinear wave equations on products of $L^p$ spaces by proving endpoint boundedness on suitable product spaces containing combinations of the local Hardy space, the local BMO and the $L^2$ spaces.
The main result is that the ellipticity and the Fredholm property of a $\Psi $DO acting on Sobolev spaces in the Weyl-Hörmander calculus are equivalent when the Hörmander metric is geodesically temperate and its associated Planck function vanishes at infinity. The proof is essentially related to the following result that we prove for geodesically temperate Hörmander metrics: If $\lambda \mapsto a_{\lambda }\in S(1,g)$ is a $\mathcal {C}^N$, $0\leq N\leq \infty $, map such that each $a_{\lambda }^w$ is invertible on $L^2$, then the mapping $\lambda \mapsto b_{\lambda }\in S(1,g)$, where $b_{\lambda }^w$ is the inverse of $a_{\lambda }^w$, is again of class $\mathcal {C}^N$. Additionally, assuming also the strong uncertainty principle for the metric, we obtain a Fedosov-Hörmander formula for the index of an elliptic operator. At the very end, we give an example to illustrate our main result.
We consider the fractional elliptic problem:where B1 is the unit ball in ℝN, N ⩾ 3, s ∈ (0, 1) and p > (N + 2s)/(N − 2s). We prove that this problem has infinitely many solutions with slow decay O(|x|−2s/(p−1)) at infinity. In addition, for each s ∈ (0, 1) there exists Ps > (N + 2s)/(N − 2s), for any (N + 2s)/(N − 2s) < p < Ps, the above problem has a solution with fast decay O(|x|2s−N). This result is the extension of the work by Dávila, del Pino, Musso and Wei (2008, Calc. Var. Partial Differ. Equ. 32, no. 4, 453–480) to the fractional case.
We study the Muskat problem describing the vertical motion of two immiscible fluids in a two-dimensional homogeneous porous medium in an Lp-setting with p ∈ (1, ∞). The Sobolev space $W_p^s(\mathbb R)$ with s = 1+1/p is a critical space for this problem. We prove, for each s ∈ (1+1/p, 2) that the Rayleigh–Taylor condition identifies an open subset of $W_p^s(\mathbb R)$ within which the Muskat problem is of parabolic type. This enables us to establish the local well-posedness of the problem in all these subcritical spaces together with a parabolic smoothing property.
We prove uniform Hölder regularity estimates for a transport-diffusion equation with a fractional diffusion operator and a general advection field in of bounded mean oscillation, as long as the order of the diffusion dominates the transport term at small scales; our only requirement is the smallness of the negative part of the divergence in some critical Lebesgue space. In comparison to a celebrated result by Silvestre, our advection field does not need to be bounded. A similar result can be obtained in the supercritical case if the advection field is Hölder continuous. Our proof is inspired by Kiselev and Nazarov and is based on the dual evolution technique. The idea is to propagate an atom property (i.e., localisation and integrability in Lebesgue spaces) under the dual conservation law, when it is coupled with the fractional diffusion operator.
In this article, we prove the continuity of the horizontal gradient near a C1,Dini non-characteristic portion of the boundary for solutions to $\Gamma ^{0,{\rm Dini}}$ perturbations of horizontal Laplaceans as in (1.1) below, where the scalar term is in scaling critical Lorentz space L(Q, 1) with Q being the homogeneous dimension of the group. This result can be thought of both as a sharpening of the $\Gamma ^{1,\alpha }$ boundary regularity result in [4] as well as a subelliptic analogue of the main result in [1] restricted to linear equations.
We study the two-phase Stokes flow driven by surface tension with two fluids of equal viscosity, separated by an asymptotically flat interface with graph geometry. The flow is assumed to be two-dimensional with the fluids filling the entire space. We prove well-posedness and parabolic smoothing in Sobolev spaces up to critical regularity. The main technical tools are an analysis of nonlinear singular integral operators arising from the hydrodynamic single-layer potential and abstract results on nonlinear parabolic evolution equations.
This paper deals with the following non-linear equation with a fractional Laplacian operator and almost critical exponents:
\[ (-\Delta)^{s} u=K(|y'|,y'')u^{({N+2s})/(N-2s)\pm\epsilon},\quad u > 0,\quad u\in D^{1,s}(\mathbb{R}^{N}), \]
where N ⩾ 4, 0 < s < 1, (y′, y″) ∈ ℝ2 × ℝN−2, ε > 0 is a small parameter and K(y) is non-negative and bounded. Under some suitable assumptions of the potential function K(r, y″), we will use the finite-dimensional reduction method and some local Pohozaev identities to prove that the above problem has a large number of bubble solutions. The concentration points of the bubble solutions include a saddle point of K(y). Moreover, the functional energies of these solutions are in the order $\epsilon ^{-(({N-2s-2})/({(N-2s)^2})}$.
In this paper, we consider an elliptic operator obtained as the superposition of a classical second-order differential operator and a nonlocal operator of fractional type. Though the methods that we develop are quite general, for concreteness we focus on the case in which the operator takes the form − Δ + ( − Δ)s, with s ∈ (0, 1). We focus here on symmetry properties of the solutions and we prove a radial symmetry result, based on the moving plane method, and a one-dimensional symmetry result, related to a classical conjecture by G.W. Gibbons.
This paper is concerned with the resolution of an inverse problem related to the recovery of a function $V$ from the source to solution map of the semi-linear equation $(\Box _{g}+V)u+u^{3}=0$ on a globally hyperbolic Lorentzian manifold $({\mathcal{M}},g)$. We first study the simpler model problem, where $({\mathcal{M}},g)$ is the Minkowski space, and prove the unique recovery of $V$ through the use of geometric optics and a three-fold wave interaction arising from the cubic non-linearity. Subsequently, the result is generalized to globally hyperbolic Lorentzian manifolds by using Gaussian beams.