To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we focus on the systemic expected shortfall and marginal expected shortfall in a multivariate continuous-time risk model with a general càdlàg process. Additionally, we conduct our study under a mild moment condition that is easily satisfied when the general càdlàg process is determined by some important investment return processes. In the presence of heavy tails, we derive asymptotic formulas for the systemic expected shortfall and marginal expected shortfall under the framework that includes wide dependence structures among losses, covering pairwise strong quasi-asymptotic independence and multivariate regular variation. Our results quantify how the general càdlàg process, heavy-tailed property of losses, and dependence structures influence the systemic expected shortfall and marginal expected shortfall. To discuss the interplay of dependence structures and heavy-tailedness, we apply an explicit order 3.0 weak scheme to estimate the expectations related to the general càdlàg process. This enables us to validate the moment condition from a numerical perspective and perform numerical studies. Our numerical studies reveal that the asymptotic dependence structure has a significant impact on the systemic expected shortfall and marginal expected shortfall, but heavy-tailedness has a more pronounced effect than the asymptotic dependence structure.
We study random walks on metric spaces with contracting isometries. In this first article of the series, we establish sharp deviation inequalities by adapting Gouëzel’s pivotal time construction. As an application, we establish the exponential bounds for deviation from below, central limit theorem, law of the iterated logarithms, and the geodesic tracking of random walks on mapping class groups and CAT(0) spaces.
The payoff in the Chow–Robbins coin-tossing game is the proportion of heads when you stop. Stopping to maximize expectation was addressed by Chow and Robbins (1965), who proved there exist integers ${k_n}$ such that it is optimal to stop at n tosses when heads minus tails is ${k_n}$. Finding ${k_n}$ was unsolved except for finitely many cases by computer. We prove an $o(n^{-1/4})$ estimate of the stopping boundary of Dvoretsky (1967), which then proves ${k_n} = \left\lceil {\alpha \sqrt n \,\, - 1/2\,\, + \,\,\frac{{\left( { - 2\zeta (\! -1/2)} \right)\sqrt \alpha }}{{\sqrt \pi }}{n^{ - 1/4}}} \right\rceil $ except for n in a set of density asymptotic to 0, at a power law rate. Here, $\alpha$ is the Shepp–Walker constant from the Brownian motion analog, and $\zeta$ is Riemann’s zeta function. An $n^{ - 1/4}$ dependence was conjectured by Christensen and Fischer (2022). Our proof uses moments involving Catalan and Shapiro Catalan triangle numbers which appear in a tree resulting from backward induction, and a generalized backward induction principle. It was motivated by an idea of Häggström and Wästlund (2013) to use backward induction of upper and lower Value bounds from a horizon, which they used numerically to settle a few cases. Christensen and Fischer, with much better bounds, settled many more cases. We use Skorohod’s embedding to get simple upper and lower bounds from the Brownian analog; our upper bound is the one found by Christensen and Fischer in another way. We use them first for yet many more examples and a conjecture, then algebraically in the tree, with feedback to get much sharper Value bounds near the border, and analytic results. Also, we give a formula that gives the exact optimal stop rule for all n up to about a third of a billion; it uses the analytic result plus terms arrived at empirically.
We introduce and study a game-theoretic model to understand the spread of an epidemic in a homogeneous population. A discrete-time stochastic process is considered where, in each epoch, first, a randomly chosen agent updates their action trying to maximize a proposed utility function, and then agents who have viral exposures beyond their immunity get infected. Our main results discuss asymptotic limiting distributions of both the cardinality of the subset of infected agents and the action profile, considered under various values of two parameters (initial action and immunity profile). We also show that the theoretical distributions are almost always achieved in the first few epochs.
Let $\{\omega _n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables on a probability space $(\Omega , \mathcal {F}, \mathbb {P})$, each uniformly distributed on the unit circle $\mathbb {T}$, and let $\ell _n=cn^{-\tau }$ for some $c>0$ and $0<\tau <1$. Let $I_{n}=(\omega _n,\omega _n+\ell _n)$ be the random interval with left endpoint $\omega _n$ and length $\ell _n$. We study the asymptotic property of the covering time $N_n(x)=\sharp \{1\leq k\leq n: x\in I_k\}$ for each $x\in \mathbb {T}$. We prove the quenched central limit theorem for the covering time, that is, $\mathbb {P}$-almost surely,
Let $G$ be a group. The notion of linear sofic approximations of $G$ over an arbitrary field $F$ was introduced and systematically studied by Arzhantseva and Păunescu [3]. Inspired by one of the results of [3], we introduce and study the invariant $\kappa _F(G)$ that captures the quality of linear sofic approximations of $G$ over $F$. In this work, we show that when $F$ has characteristic zero and $G$ is linear sofic over $F$, then $\kappa _F(G)$ takes values in the interval $[1/2,1]$ and $1/2$ cannot be replaced by any larger value. Further, we show that under the same conditions, $\kappa _F(G)=1$ when $G$ is torsion-free. These results answer a question posed by Arzhantseva and Păunescu [3] for fields of characteristic zero. One of the new ingredients of our proofs is an effective non-concentration estimates for random walks on finitely generated abelian groups, which may be of independent interest.
We investigate the tail behavior of the first-passage time for Sinai’s random walk in a random environment. Our method relies on the connection between Sinai’s walk and branching processes with immigration in a random environment, and the analysis on some important quantities of these branching processes such as extinction time, maximum population, and total population.
In this paper, we study random walks on groups that contain superlinear-divergent geodesics, in the line of thoughts of Goldsborough and Sisto. The existence of a superlinear-divergent geodesic is a quasi-isometry invariant which allows us to execute Gouëzel’s pivoting technique. We develop the theory of superlinear divergence and establish a central limit theorem for random walks on these groups.
We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when $d\ge 2$ and that the rate of direction changing follows a power law $t^{-\alpha}$, $0<\alpha\le 1$, or the law $(\!\ln t)^{-\beta}$ where $\beta>2$.
We present a detailed analysis of random motions moving in higher spaces with a natural number of velocities. In the case of the so-called minimal random dynamics, under some broad assumptions, we give the joint distribution of the position of the motion (for both the inner part and the boundary of the support) and the number of displacements performed with each velocity. Explicit results for cyclic and complete motions are derived. We establish useful relationships between motions moving in different spaces, and we derive the form of the distribution of the movements in arbitrary dimension. Finally, we investigate further properties for stochastic motions governed by non-homogeneous Poisson processes.
We prove that the local time of random walks conditioned to stay positive converges to the corresponding local time of three-dimensional Bessel processes by proper scaling. Our proof is based on Tanaka’s pathwise construction for conditioned random walks and the derivation of asymptotics for mixed moments of the local time.
We investigate the translation lengths of group elements that arise in random walks on the isometry groups of Gromov hyperbolic spaces. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation lengths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov, and almost every random walk on $\mathrm {Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk.
We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmüller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
For an n-element subset U of $\mathbb {Z}^2$, select x from U according to harmonic measure from infinity, remove x from U and start a random walk from x. If the walk leaves from y when it first enters the rest of U, add y to it. Iterating this procedure constitutes the process we call harmonic activation and transport (HAT).
HAT exhibits a phenomenon we refer to as collapse: Informally, the diameter shrinks to its logarithm over a number of steps which is comparable to this logarithm. Collapse implies the existence of the stationary distribution of HAT, where configurations are viewed up to translation, and the exponential tightness of diameter at stationarity. Additionally, collapse produces a renewal structure with which we establish that the center of mass process, properly rescaled, converges in distribution to two-dimensional Brownian motion.
To characterize the phenomenon of collapse, we address fundamental questions about the extremal behavior of harmonic measure and escape probabilities. Among n-element subsets of $\mathbb {Z}^2$, what is the least positive value of harmonic measure? What is the probability of escape from the set to a distance of, say, d? Concerning the former, examples abound for which the harmonic measure is exponentially small in n. We prove that it can be no smaller than exponential in $n \log n$. Regarding the latter, the escape probability is at most the reciprocal of $\log d$, up to a constant factor. We prove it is always at least this much, up to an n-dependent factor.
In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on $\unicode{x2124}$: in this model, the probability that the walk moves from a point of $\unicode{x2124}$ to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod $M_1$ topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.
Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment $\{Z_n\}$ whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points $\{(\tau_j, \nu_j)\}$—specifically the values of the process at crossing times, viz. $\{(Z_{\tau_j}, Z_{\nu_j})\}$—along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.
Let G be a real Lie group, $\Lambda <G$ a lattice and $H\leqslant G$ a connected semisimple subgroup without compact factors and with finite center. We define the notion of H-expanding measures $\mu $ on H and, applying recent work of Eskin–Lindenstrauss, prove that $\mu $-stationary probability measures on $G/\Lambda $ are homogeneous. Transferring a construction by Benoist–Quint and drawing on ideas of Eskin–Mirzakhani–Mohammadi, we construct Lyapunov/Margulis functions to show that H-expanding random walks on $G/\Lambda $ satisfy a recurrence condition and that homogeneous subspaces are repelling. Combined with a countability result, this allows us to prove equidistribution of trajectories in $G/\Lambda $ for H-expanding random walks and to obtain orbit closure descriptions. Finally, elaborating on an idea of Simmons–Weiss, we deduce Birkhoff genericity of a class of measures with respect to some diagonal flows and extend their applications to Diophantine approximation on similarity fractals to a nonconformal and weighted setting.
We derive conditions for recurrence and transience for time-inhomogeneous birth-and-death processes considered as random walks with positively biased drifts. We establish a general result, from which the earlier known particular results by Menshikov and Volkov [‘Urn-related random walk with drift $\rho x^\alpha /t^\beta $’, Electron. J. Probab.13 (2008), 944–960] follow.
Let $S=\{p_1, \ldots , p_r,\infty \}$ for prime integers $p_1, \ldots , p_r.$ Let X be an S-adic compact nilmanifold, equipped with the unique translation-invariant probability measure $\mu .$ We characterize the countable groups $\Gamma $ of automorphisms of X for which the Koopman representation $\kappa $ on $L^2(X,\mu )$ has a spectral gap. More specifically, let Y be the maximal quotient solenoid of X (thus, Y is a finite-dimensional, connected, compact abelian group). We show that $\kappa $ does not have a spectral gap if and only if there exists a $\Gamma $-invariant proper subsolenoid of Y on which $\Gamma $ acts as a virtually abelian group,
We prove that for a vast class of random walks on a compactly generated group, the exponential growth of convolutions of a probability density function along almost every sample path is bounded by the growth of the group. As an application, we show that the almost sure and $L^1$ convergences of the Shannon–McMillan–Breiman theorem hold for compactly supported random walks on compactly generated groups with subexponential growth.
In this paper we study the asymptotic behaviour of a random uniform parking function $\pi_n$ of size n. We show that the first $k_n$ places $\pi_n(1),\ldots,\pi_n(k_n)$ of $\pi_n$ are asymptotically independent and identically distributed (i.i.d.) and uniform on $\{1,2,\ldots,n\}$, for the total variation distance when $k_n = {\rm{o}}(\sqrt{n})$, and for the Kolmogorov distance when $k_n={\rm{o}}(n)$, improving results of Diaconis and Hicks. Moreover, we give bounds for the rate of convergence, as well as limit theorems for certain statistics such as the sum or the maximum of the first $k_n$ parking places. The main tool is a reformulation using conditioned random walks.