The relation between local spacetime curvature and matter energy density is given by the Einstein equation – it is the field equation of general relativity in the way that Maxwell’s equations are the field equations of electromagnetism. Maxwell’s equations relate the electromagnetic field to its sources – charges and currents. Einstein’s equation relates spacetime curvature to its source – the mass-energy of matter. This chapter gives a very brief introduction to the Einstein equation; we consider the equation in the absence of matter sources (the vacuum Einstein equation) and will include matter sources in Chapter 22. Even the vacuum Einstein equation has important implications. Just as the field of a static point charge and electromagnetic waves are solutions of the source-free Maxwell’s equations, the Schwarzschild geometry and gravitational waves are solutions of the vacuum Einstein equation.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.