Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 23: Gravitational Wave Emission

Chapter 23: Gravitational Wave Emission

pp. 491-514

Authors

, University of California, Santa Barbara
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

Gravitational waves provide a window on the universe of astronomical phenomena that is different from any in the electromagnetic spectrum. Mass in many different varieties of motion is a source of propagating ripples in spacetime curvature. In order to interpret the observations of gravitational wave detectors on Earth and in space, it is necessary to solve the Einstein equation for the gravitational radiation produced by given sources. Predicting the gravitational radiation from strong-curvature, rapidly varying sources is a problem generally tractable only by numerical simulation of the fully nonlinear Einstein equation – a subject well beyond the scope of this book. However, some insight into the production of gravitational waves can be obtained from examining the more tractable problem of the small ripples in spacetime emitted by weak, nonrelativistic sources.

Keywords

  • Lorentz gauge condition
  • linearized Einstein equation
  • weak gravitational waves
  • second mass moment
  • analogies with electromagnetism
  • binary star sources
  • quadrupole formula
  • quadrupole moment tensor
  • effects of gravitational radiation

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$69.00
Hardback
US$69.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers