Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 8: Geodesics

Chapter 8: Geodesics

pp. 169-185

Authors

, University of California, Santa Barbara
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

Both experimentally and theoretically, the curved spacetimes of general relativity are explored by studying how test particles and light rays move through them. This chapter derives and analyzes the equations governing the motion of test particles and light rays in a general curved spacetime. Only test particles free from any influences other than the curvature of spacetime (electric forces, for instance) are considered. Such particles are called free, or freely falling, in general relativity. In general relativity, free means free from any influences besides the curvature of spacetime. We begin with the equations of motion for test particles with nonvanishing rest mass moving on timelike world lines, and revisit the equations of motion for light rays.

Keywords

  • test particle
  • geodesic equation
  • wormhole geometry
  • Christoffel symbols
  • Killing vector
  • null geodesics
  • Riemann normal coordinates

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$69.00
Hardback
US$69.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers