Einstein’s 1905 special theory of relativity requires a profound revision of the Newtonian ideas of space and time that were reviewed in the previous chapter. In special relativity, the Newtonian ideas of Euclidean space and a separate absolute time are subsumed into a single four-dimensional union of space and time, called spacetime. This chapter reviews the basic principles of special relativity, starting from the non-Euclidean geometry of its spacetime. Einstein’s 1905 successful modification of Newtonian mechanics, which we call special relativity, assumed that the velocity of light had the same value, c, in all inertial frames, which requires a reexamination, and ultimately the abandonment, of the Newtonian idea of absolute time. Instead, he found a new connection between inertial frames that is consistent with the same value of the velocity of light in all of them. The defining assumption of special relativity is a geometry for four-dimensional spacetime.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.