To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop tools for constructing rigid analytic trivializations for Drinfeld modules as infinite products of Frobenius twists of matrices, from which we recover the rigid analytic trivialization given by Pellarin in terms of Anderson generating functions. One advantage is that these infinite products can be obtained from only a finite amount of initial calculation, and consequently we obtain new formulas for periods and quasi-periods, similar to the product expansion of the Carlitz period. We further link to results of Gekeler and Maurischat on the $\infty $-adic field generated by the period lattice.
has appreciably fewer solutions in the subcritical range $s < \tfrac 12k(k+1)$ than its homogeneous counterpart, provided that $a_{\ell } \neq 0$ for some $\ell \leqslant k-1$. Our methods use Vinogradov’s mean value theorem in combination with a shifting argument.
Let f be an elliptic modular form and p an odd prime that is coprime to the level of f. We study the link between divisors of the characteristic ideal of the p-primary fine Selmer group of f over the cyclotomic $\mathbb {Z}_p$ extension of $\mathbb {Q}$ and the greatest common divisor of signed Selmer groups attached to f defined using the theory of Wach modules. One of the key ingredients of our proof is a generalisation of a result of Wingberg on the structure of fine Selmer groups of abelian varieties with supersingular reduction at p to the context of modular forms.
Hilbert schemes are an object arising from geometry and are closely related to physics and modular forms. Recently, there have been investigations from number theorists about the Betti numbers and Hodge numbers of the Hilbert schemes of points of an algebraic surface. In this paper, we prove that Göttsche's generating function of the Hodge numbers of Hilbert schemes of $n$ points of an algebraic surface is algebraic at a CM point $\tau$ and rational numbers $z_1$ and $z_2$. Our result gives a refinement of the algebraicity on Betti numbers.
By combining the generating function approach with the Lagrange expansion formula, we evaluate, in closed form, two multiple alternating sums of binomial coefficients, which can be regarded as alternating counterparts of the circular sum evaluation discovered by Carlitz [‘The characteristic polynomial of a certain matrix of binomial coefficients’, Fibonacci Quart.3(2) (1965), 81–89].
Let p be a rational prime. Let F be a totally real number field such that F is unramified over p and the residue degree of any prime ideal of F dividing p is $\leq 2$. In this paper, we show that the eigenvariety for $\mathrm {Res}_{F/\mathbb {Q}}(\mathit {GL}_{2})$, constructed by Andreatta, Iovita, and Pilloni, is proper at integral weights for $p\geq 3$. We also prove a weaker result for $p=2$.
The cusped hyperbolic n-orbifolds of minimal volume are well known for $n\leq 9$. Their fundamental groups are related to the Coxeter n-simplex groups $\Gamma _{n}$. In this work, we prove that $\Gamma _{n}$ has minimal growth rate among all non-cocompact Coxeter groups of finite covolume in $\textrm{Isom}\mathbb H^{n}$. In this way, we extend previous results of Floyd for $n=2$ and of Kellerhals for $n=3$, respectively. Our proof is a generalization of the methods developed together with Kellerhals for the cocompact case.
We consider Shimura varieties for orthogonal or spin groups acting on hermitian symmetric domains of type IV. We give regular $p$-adic integral models for these varieties over odd primes $p$ at which the level subgroup is the connected stabilizer of a vertex lattice in the orthogonal space. Our construction is obtained by combining results of Kisin and the first author with an explicit presentation and resolution of a corresponding local model.
We determine the local deformation rings of sufficiently generic mod $l$ representations of the Galois group of a $p$-adic field, when $l \neq p$, relating them to the space of $q$-power-stable semisimple conjugacy classes in the dual group. As a consequence, we give a local proof of the $l \neq p$ Breuil–Mézard conjecture of the author, in the tame case.
We determine reductions of $2$-dimensional, irreducible, semistable, and non-crystalline representations of $\mathrm {Gal}\left (\overline {\mathbb {Q}}_p/\mathbb {Q}_p\right )$ with Hodge–Tate weights $0 < k-1$ and with $\mathcal L$-invariant whose p-adic norm is sufficiently large, depending on k. Our main result provides the first systematic examples of the reductions for$k \geq p$.
Let $A$ be a non-isotrivial ordinary abelian surface over a global function field of characteristic $p>0$ with good reduction everywhere. Suppose that $A$ does not have real multiplication by any real quadratic field with discriminant a multiple of $p$. We prove that there are infinitely many places modulo which $A$ is isogenous to the product of two elliptic curves.
Let $X/\mathbb {F}_{q}$ be a smooth, geometrically connected, quasi-projective scheme. Let $\mathcal {E}$ be a semi-simple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands $\mathcal {E}_i$ of $\mathcal {E}$ have rank 2, determinant $\bar {\mathbb {Q}}_p(-1)$, and infinite monodromy at $\infty$. Suppose further that for each closed point $x$ of $X$, the characteristic polynomial of $\mathcal {E}$ at $x$ is in $\mathbb {Q}[t]\subset \mathbb {Q}_p[t]$. Then there exists a dense open subset $U\subset X$ such that $\mathcal {E}|_U$ comes from a family of abelian varieties on $U$. As an application, let $L_1$ be an irreducible lisse $\bar {\mathbb {Q}}_l$ sheaf on $X$ that has rank 2, determinant $\bar {\mathbb {Q}}_l(-1)$, and infinite monodromy at $\infty$. Then all crystalline companions to $L_1$ exist (as predicted by Deligne's crystalline companions conjecture) if and only if there exist a dense open subset $U\subset X$ and an abelian scheme $\pi _U\colon A_U\rightarrow U$ such that $L_1|_U$ is a summand of $R^{1}(\pi _U)_*\bar {\mathbb {Q}}_l$.
The Grothendieck–Serre conjecture predicts that every generically trivial torsor under a reductive group scheme G over a regular local ring R is trivial. We settle it in the case when G is quasi-split and R is unramified. Some of the techniques that allow us to overcome obstacles that have so far kept the mixed characteristic case out of reach include a version of Noether normalization over discrete valuation rings, as well as a suitable presentation lemma for smooth relative curves in mixed characteristic that facilitates passage to the relative affine line via excision and patching.
Although there is no natural internal product for hermitian forms over an algebra with involution of the first kind, we describe how to multiply two $\varepsilon $-hermitian forms to obtain a quadratic form over the base field. This allows to define a commutative graded ring structure by taking together bilinear forms and $\varepsilon $-hermitian forms, which we call the mixed Witt ring of an algebra with involution. We also describe a less powerful version of this construction for unitary involutions, which still defines a ring, but with a grading over $\mathbb {Z}$ instead of the Klein group.
We first describe a general framework for defining graded rings out of monoidal functors from monoidal categories with strong symmetry properties to categories of modules. We then give a description of such a strongly symmetric category $\mathbf {Br}_h(K,\iota )$ which encodes the usual hermitian Morita theory of algebras with involutions over a field K.
We can therefore apply the general framework to $\mathbf {Br}_h(K,\iota )$ and the Witt group functors to define our mixed Witt rings, and derive their basic properties, including explicit formulas for products of diagonal forms in terms of involution trace forms, explicit computations for the case of quaternion algebras, and reciprocity formulas relative to scalar extensions.
We intend to describe in future articles further properties of those rings, such as a $\lambda $-ring structure, and relations with the Milnor conjecture and the theory of signatures of hermitian forms.
We prove the convergence and ergodicity of a wide class of real and higher-dimensional continued fraction algorithms, including folded and $\alpha $-type variants of complex, quaternionic, octonionic, and Heisenberg continued fractions, which we combine under the framework of Iwasawa continued fractions. The proof is based on the interplay of continued fractions and hyperbolic geometry, the ergodicity of geodesic flow in associated modular manifolds, and a variation on the notion of geodesic coding that we refer to as geodesic marking. As a corollary of our study of markable geodesics, we obtain a generalization of Serret’s tail-equivalence theorem for almost all points. The results are new even in the case of some real and complex continued fractions.
Let F be a system of polynomial equations in one or more variables with integer coefficients. We show that there exists a univariate polynomial $D \in \mathbb {Z}[x]$ such that F is solvable modulo p if and only if the equation $D(x) \equiv 0 \pmod {p}$ has a solution.
We consider the two-dimensional shrinking target problem in beta dynamical systems (for general $\beta>1$) with general errors of approximation. Let $f, g$ be two positive continuous functions. For any $x_0,y_0\in [0,1]$, define the shrinking target set
where $S_nf(x)=\sum _{j=0}^{n-1}f(T_\beta ^jx)$ is the Birkhoff sum. We calculate the Hausdorff dimension of this set and prove that it is the solution to some pressure function. This represents the first result of this kind for the higher-dimensional beta dynamical systems.
In this paper, we study the extreme values of the Rankin–Selberg L-functions associated with holomorphic cusp forms in the vertical direction. Assuming the generalised Riemann hypothesis (GRH), we prove that
Given any rectangular polyhedron $3$-manifold $\mathcal {P}$ tiled with unit cubes, we find infinitely many explicit directions related to cubic algebraic numbers such that all half-infinite geodesics in these directions are uniformly distributed in $\mathcal {P}$.