We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a Poisson process approximation result for stabilising functionals of a determinantal point process. Our results use concrete couplings of determinantal processes with different Palm measures and exploit their association properties. Second, we focus on the Ginibre process and show in the asymptotic scenario of an increasing observation window that the process of points with a large nearest neighbour distance converges after a suitable scaling to a Poisson point process. As a corollary, we obtain the scaling of the maximum nearest neighbour distance in the Ginibre process, which turns out to be different from its analogue for independent points.
The scale function plays a significant role in the fluctuation theory of Lévy processes, particularly in addressing exit problems. However, its definition is established through the Laplace transform, which generally lacks an explicit representation. This paper introduces a novel series representation for the scale function, utilizing Laguerre polynomials to construct a uniformly convergent approximation sequence. Additionally, we conduct statistical inference based on specific discrete observations and propose estimators for the scale function that are asymptotically normal.
The Hawkes process is a popular candidate for researchers to model phenomena that exhibit a self-exciting nature. The classical Hawkes process assumes the excitation kernel takes an exponential form, thus suggesting that the peak excitation effect of an event is immediate and the excitation effect decays towards 0 exponentially. While the assumption of an exponential kernel makes it convenient for studying the asymptotic properties of the Hawkes process, it can be restrictive and unrealistic for modelling purposes. A variation on the classical Hawkes process is proposed where the exponential assumption on the kernel is replaced by integrability and smoothness type conditions. However, it is substantially more difficult to conduct asymptotic analysis under this setup since the intensity process is non-Markovian when the excitation kernel is non-exponential, rendering techniques for studying the asymptotics of Markov processes inappropriate. By considering the Hawkes process with a general excitation kernel as a stationary Poisson cluster process, the intensity process is shown to be ergodic. Furthermore, a parametric setup is considered, under which, by utilising the recently established ergodic property of the intensity process, consistency of the maximum likelihood estimator is demonstrated.
The present paper develops a unified approach when dealing with short- or long-range dependent processes with finite or infinite variance. We are concerned with the convergence rate in the strong law of large numbers (SLLN). Our main result is a Marcinkiewicz–Zygmund law of large numbers for $S_{n}(f)= \sum_{i=1}^{n}f(X_{i})$, where $\{X_i\}_{i\geq 1}$ is a real stationary Gaussian sequence and $f(\!\cdot\!)$ is a measurable function. Key technical tools in the proofs are new maximal inequalities for partial sums, which may be useful in other problems. Our results are obtained by employing truncation alongside new maximal inequalities. The result can help to differentiate the effects of long memory and heavy tails on the convergence rate for limit theorems.
We consider stationary configurations of points in Euclidean space that are marked by positive random variables called scores. The scores are allowed to depend on the relative positions of other points and outside sources of randomness. Such models have been thoroughly studied in stochastic geometry, e.g. in the context of random tessellations or random geometric graphs. It turns out that in a neighborhood of a point with an extreme score it is possible to rescale positions and scores of nearby points to obtain a limiting point process, which we call the tail configuration. Under some assumptions on dependence between scores, this local limit determines the global asymptotics for extreme scores within increasing windows in $\mathbb{R}^d$. The main result establishes the convergence of rescaled positions and clusters of high scores to a Poisson cluster process, quantifying the idea of the Poisson clumping heuristic by Aldous (1989, in the point process setting). In contrast to the existing results, our framework allows for explicit calculation of essentially all extremal quantities related to the limiting behavior of extremes. We apply our results to models based on (marked) Poisson processes where the scores depend on the distance to the kth nearest neighbor and where scores are allowed to propagate through a random network of points depending on their locations.
We study convergence rates, in mean, for the Hausdorff metric between a finite set of stationary random variables and their common support, which is supposed to be a compact subset of $\mathbb{R}^d$. We propose two different approaches for this study. The first is based on the notion of a minimal index. This notion is introduced in this paper. It is in the spirit of the extremal index, which is much used in extreme value theory. The second approach is based on a $\beta$-mixing condition together with a local-type dependence assumption. More precisely, all our results concern stationary $\beta$-mixing sequences satisfying a tail condition, known as the (a, b)-standard assumption, together with a local-type dependence condition or stationary sequences satisfying the (a, b)-standard assumption and having a positive minimal index. We prove that the optimal rates of the independent and identically distributed setting can be reached. We apply our results to stationary Markov chains on a ball, or to a class of Markov chains on a circle or on a torus. We study with simulations the particular examples of a Möbius Markov chain on the unit circle and of a Markov chain on the unit square wrapped on a torus.
We investigate geometric properties of invariant spatio-temporal random fields $X\colon\mathbb M^d\times \mathbb R\to \mathbb R$ defined on a compact two-point homogeneous space $\mathbb M^d$ in any dimension $d\ge 2$, and evolving over time. In particular, we focus on chi-squared-distributed random fields, and study the large-time behavior (as $T\to +\infty$) of the average on [0,T] of the volume of the excursion set on the manifold, i.e. of $\lbrace X(\cdot, t)\ge u\rbrace$ (for any $u >0$). The Fourier components of X may have short or long memory in time, i.e. integrable or non-integrable temporal covariance functions. Our argument follows the approach developed in Marinucci et al. (2021) and allows us to extend their results for invariant spatio-temporal Gaussian fields on the two-dimensional unit sphere to the case of chi-squared distributed fields on two-point homogeneous spaces in any dimension. We find that both the asymptotic variance and limiting distribution, as $T\to +\infty$, of the average empirical volume turn out to be non-universal, depending on the memory parameters of the field X.
In this paper we derive cumulant bounds for subgraph counts and power-weighted edge lengths in a class of spatial random networks known as weight-dependent random connection models. These bounds give rise to different probabilistic results, from which we mainly focus on moderate deviations of the respective statistics, but also show a concentration inequality and a normal approximation result. This involves dealing with long-range spatial correlations induced by the profile function and the weight distribution. We start by deriving the bounds for the classical case of a Poisson vertex set, and then provide extensions to α-determinantal processes.
For a spectrally negative Lévy process X, consider $g_t$ and its infinitesimal generator. Moreover, with $t\geq 0$, the last time X is below the level zero before time $\{(g_t,t, X_t), t\geq 0 \}$ the length of a current positive excursion, we derive a general formula that allows us to calculate a functional of the whole path of $U_t\,:\!=\,t-g_t$. We use a perturbation method for Lévy processes to derive an Itô formula for the three-dimensional process $ (U, X)=\{(U_t, X_t),t\geq 0\}$ in terms of the positive and negative excursions of the process X. As a corollary, we find the joint Laplace transform of $(U_{\mathbf{e}_q}, X_{\mathbf{e}_q})$, where $\mathbf{e}_q$ is an independent exponential time, and the q-potential measure of the process (U, X). Furthermore, using the results mentioned above, we find a solution to a general optimal stopping problem depending on (U, X) with an application in corporate bankruptcy. Lastly, we establish a link between the optimal prediction of $g_{\infty}$ and optimal stopping problems in terms of (U, X) as per Baurdoux, E. J. and Pedraza, J. M., $L_p$ optimal prediction of the last zero of a spectrally negative Lévy process, Annals of Applied Probability, 34 (2024), 1350–1402.
In this paper, we introduce a non-homogeneous version of the generalized counting process (GCP). We time-change this process by an independent inverse stable subordinator and derive the system of governing differential–integral equations for the marginal distributions of its increments. We then consider the GCP time-changed by a multistable subordinator and obtain its Lévy measure and the distribution of its first passage times. We discuss an application of a time-changed GCP, namely the time-changed generalized counting process-I (TCGCP-I) in ruin theory. A fractional version of the TCGCP-I is studied, and its long-range dependence property is established.
We consider a single server queue that has a threshold to change its arrival process and service speed by its queue length, which is referred to as a two-level GI/G/1 queue. This model is motivated by an energy saving problem for a single server queue whose arrival process and service speed are controlled. To obtain its performance in tractable form, we study the limit of the stationary distribution of the queue length in this two-level queue under scaling in heavy traffic. Except for a special case, this limit corresponds to its diffusion approximation. It is shown that this limiting distribution is truncated exponential (or uniform if the drift is null) below the threshold level and exponential above it under suitably chosen system parameters and generally distributed interarrival times and workloads brought by customers. This result is proved under a mild limitation on arrival parameters using the so-called basic adjoint relationship (BAR) approach studied in Braverman, Dai, and Miyazawa (2017, 2024) and Miyazawa (2017, 2024). We also intuitively discuss about a diffusion process corresponding to the limit of the stationary distribution under scaling.
We show that $\alpha $-stable Lévy motions can be simulated by any ergodic and aperiodic probability-preserving transformation. Namely we show that: for $0<\alpha <1$ and every $\alpha $-stable Lévy motion ${\mathbb {W}}$, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1\leq \alpha <2$ and every symmetric $\alpha $-stable Lévy motion, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1< \alpha <2$ and every $-1\leq \beta \leq 1$ there exists a function f whose associated time series is in the classical domain of attraction of an $S_\alpha (\ln (2), \beta ,0)$ random variable.
We use the framework of multivariate regular variation to analyse the extremal behaviour of preferential attachment models. To this end, we follow a directed linear preferential attachment model for a random, heavy-tailed number of steps in time and treat the incoming edge count of all existing nodes as a random vector of random length. By combining martingale properties, moment bounds and a Breiman type theorem we show that the resulting quantity is multivariate regularly varying, both as a vector of fixed length formed by the edge counts of a finite number of oldest nodes, and also as a vector of random length viewed in sequence space. A Pólya urn representation allows us to explicitly describe the extremal dependence between the degrees with the help of Dirichlet distributions. As a by-product of our analysis we establish new results for almost sure convergence of the edge counts in sequence space as the number of nodes goes to infinity.
The payoff in the Chow–Robbins coin-tossing game is the proportion of heads when you stop. Stopping to maximize expectation was addressed by Chow and Robbins (1965), who proved there exist integers ${k_n}$ such that it is optimal to stop at n tosses when heads minus tails is ${k_n}$. Finding ${k_n}$ was unsolved except for finitely many cases by computer. We prove an $o(n^{-1/4})$ estimate of the stopping boundary of Dvoretsky (1967), which then proves ${k_n} = \left\lceil {\alpha \sqrt n \,\, - 1/2\,\, + \,\,\frac{{\left( { - 2\zeta (\! -1/2)} \right)\sqrt \alpha }}{{\sqrt \pi }}{n^{ - 1/4}}} \right\rceil $ except for n in a set of density asymptotic to 0, at a power law rate. Here, $\alpha$ is the Shepp–Walker constant from the Brownian motion analog, and $\zeta$ is Riemann’s zeta function. An $n^{ - 1/4}$ dependence was conjectured by Christensen and Fischer (2022). Our proof uses moments involving Catalan and Shapiro Catalan triangle numbers which appear in a tree resulting from backward induction, and a generalized backward induction principle. It was motivated by an idea of Häggström and Wästlund (2013) to use backward induction of upper and lower Value bounds from a horizon, which they used numerically to settle a few cases. Christensen and Fischer, with much better bounds, settled many more cases. We use Skorohod’s embedding to get simple upper and lower bounds from the Brownian analog; our upper bound is the one found by Christensen and Fischer in another way. We use them first for yet many more examples and a conjecture, then algebraically in the tree, with feedback to get much sharper Value bounds near the border, and analytic results. Also, we give a formula that gives the exact optimal stop rule for all n up to about a third of a billion; it uses the analytic result plus terms arrived at empirically.
Consider nested subdivisions of a bounded real set into intervals defining the digits $X_1,X_2,\ldots$ of a random variable X with a probability density function f. If f is almost everywhere lower semi-continuous, there is a non-negative integer-valued random variable N such that the distribution of $R=(X_{N+1},X_{N+2},\ldots)$ conditioned on $S=(X_1,\ldots,X_N)$ does not depend on f. If also the lengths of the intervals exhibit a Markovian structure, $R\mid S$ becomes a Markov chain of a certain order $s\ge0$. If $s=0$ then $X_{N+1},X_{N+2},\ldots$ are independent and identically distributed with a known distribution. When $s>0$ and the Markov chain is uniformly geometric ergodic, there is a random time M such that the chain after time $\max\{N,s\}+M-s$ is stationary and M follows a simple known distribution.
We introduce the exponentially preferential recursive tree and study some properties related to the degree profile of nodes in the tree. The definition of the tree involves a radix $a\gt 0$. In a tree of size $n$ (nodes), the nodes are labeled with the numbers $1,2, \ldots ,n$. The node labeled $i$ attracts the future entrant $n+1$ with probability proportional to $a^i$.
We dedicate an early section for algorithms to generate and visualize the trees in different regimes. We study the asymptotic distribution of the outdegree of node $i$, as $n\to \infty$, and find three regimes according to whether $0 \lt a \lt 1$ (subcritical regime), $a=1$ (critical regime), or $a\gt 1$ (supercritical regime). Within any regime, there are also phases depending on a delicate interplay between $i$ and $n$, ramifying the asymptotic distribution within the regime into “early,” “intermediate” and “late” phases. In certain phases of certain regimes, we find asymptotic Gaussian laws. In certain phases of some other regimes, small oscillations in the asymototic laws are detected by the Poisson approximation techniques.
Motivated by the investigation of probability distributions with finite variance but heavy tails, we study infinitely divisible laws whose Lévy measure is characterized by a radial component of geometric (tempered) stable type. We closely investigate the univariate case: characteristic exponents and cumulants are calculated, as well as spectral densities; absolute continuity relations are shown, and short- and long-time scaling limits of the associated Lévy processes analyzed. Finally, we derive some properties of the involved probability density functions.
We consider a superprocess $\{X_t\colon t\geq 0\}$ in a random environment described by a Gaussian field $\{W(t,x)\colon t\geq 0,x\in \mathbb{R}^d\}$. First, we set up a representation of $\mathbb{E}[\langle g, X_t\rangle\mathrm{e}^{-\langle \,f,X_t\rangle }\mid\sigma(W)\vee\sigma(X_r,0\leq r\leq s)]$ for $0\leq s < t$ and some functions f,g, which generalizes the result in Mytnik and Xiong (2007, Theorem 2.15). Next, we give a uniform upper bound for the conditional log-Laplace equation with unbounded initial values. We then use this to establish the corresponding conditional entrance law. Finally, the excursion representation of $\{X_t\colon t\geq 0\}$ is given.
Considering a double-indexed array $(Y_{n,i:\,n\ge 1,i\ge 1})$ of non-negative regularly varying random variables, we study the random-length weighted sums and maxima from its ‘row’ sequences. These sums and maxima may have the same tail and extremal indices (Markovich and Rodionov 2020). The main constraints of the latter results are that there exists a unique series in a scheme of series with the minimum tail index and the tail of the term number is lighter than the tail of the terms. Here, a bounded random number of series are allowed to have the minimum tail index and the tail of the term number may be heavier than the tail of the terms. We derive the tail and extremal indices of the weighted non-stationary random-length sequences under a broader set of conditions than in Markovich and Rodionov (2020). We provide examples of random sequences for which the assumptions are valid. Perspectives in adopting the results in different application areas are formulated.
where $b\,:\, \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a Lipschitz-continuous function, $A \in \mathbb{R}^{d \times d}$ is a positive-definite matrix, $(Z_t)_{t\geqslant 0}$ is a d-dimensional rotationally symmetric $\alpha$-stable Lévy process with $\alpha \in (1,2)$ and $x\in\mathbb{R}^{d}$. We use two Euler–Maruyama schemes with decreasing step sizes $\Gamma = (\gamma_n)_{n\in \mathbb{N}}$ to approximate the invariant measure of $(X_t)_{t \geqslant 0}$: one uses independent and identically distributed $\alpha$-stable random variables as innovations, and the other employs independent and identically distributed Pareto random variables. We study the convergence rates of these two approximation schemes in the Wasserstein-1 distance. For the first scheme, under the assumption that the function b is Lipschitz and satisfies a certain dissipation condition, we demonstrate a convergence rate of $\gamma^{\frac{1}{\alpha}}_n$. This convergence rate can be improved to $\gamma^{1+\frac {1}{\alpha}-\frac{1}{\kappa}}_n$ for any $\kappa \in [1,\alpha)$, provided b has the additional regularity of bounded second-order directional derivatives. For the second scheme, where the function b is assumed to be twice continuously differentiable, we establish a convergence rate of $\gamma^{\frac{2-\alpha}{\alpha}}_n$; moreover, we show that this rate is optimal for the one-dimensional stable Ornstein–Uhlenbeck process. Our theorems indicate that the recent significant result of [34] concerning the unadjusted Langevin algorithm with additive innovations can be extended to stochastic differential equations driven by an $\alpha$-stable Lévy process and that the corresponding convergence rate exhibits similar behaviour. Compared with the result in [6], our assumptions have relaxed the second-order differentiability condition, requiring only a Lipschitz condition for the first scheme, which broadens the applicability of our approach.