Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 38: Hidden Markov Models

Chapter 38: Hidden Markov Models

pp. 1517-1562

Authors

, École Polytechnique Fédérale de Lausanne
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

We expectation-maximization (EM) algorithm can be used to estimate the underlying parameters of the conditional probability density functions (pdfs) by approximating the maximum-likelihood (ML) solution. We found that the algorithm operates on a collection of independent observations, where each observation is generated independently from one of the mixture components. In this chapter and the next, we extend this construction and consider hidden Markov models (HMMs), where the mixture component for one observation is now dependent on the component used to generate the most recent past observation.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$110.00
Hardback
US$110.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers