We continue our treatment of Markov decision processes (MDPs) and focus in this chapter on methods for determining optimal actions or policies. We derive two popular methods known as value iteration and policy iteration, and establish their convergence properties. We also examine the Bellman optimality principle in the context of value and policy learning. In a later section, we extend the discussion to the more challenging case of partially observable MDPs (POMDPs), where the successive states of the MDP are unobservable to the agent, and the agent is only able to sense measurements emitted randomly by the MDP from the various states. We will define POMDPs and explain that they can be reformulated as belief‐MDPs with continuous (rather than discrete) states. This fact complicates the solution of the value iteration. Nevertheless, we will show that the successive value iterates share a useful property, namely, that they are piecewise linear and convex. This property can be exploited by computational methods to reduce the complexity of solving the value iteration for POMDPs.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.