The discussion in the last two chapters focused on directed graphical models or Bayesian networks, where a directed link from a variable x1 toward another variable x2 carries with it an implicit connotation of “causal effect” by x1 on x2. In many instances, this implication need not be appropriate or can even be limiting. For example, there are cases where conditional independence relations cannot be represented by a directed graph. One such example is provided in Prob. 43.1. In this chapter, we examine another form of graphical representations where the links are not required to be directed anymore, and the probability distributions are replaced by potential functions. These are strictly positive functions defined over sets of connected nodes; they broaden the level of representation by graphical models. The potential functions carry with them a connotation of “similarity” or “affinity” among the variables, but can also be rolled back to represent probability distributions. Over undirected graphs, edges linking nodes will continue to reflect pairwise relationship between the variables but will lead to a fundamental factorization result in terms of the product of clique potential functions. We will show that these functions play a prominent role in the development of message-passing algorithms for the solution of inference problems.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.