Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 33: Predictive Modeling

Chapter 33: Predictive Modeling

pp. 1319-1351

Authors

, École Polytechnique Fédérale de Lausanne
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

Maximum likelihood (ML) is a powerful statistical tool that determines model parameters θ in order to fit probability density functions (pdfs) onto data measurements. The estimated pdfs can then be used for at least two purposes. First, they can help construct optimal estimators or classifiers (such as the conditional mean estimator, the maximum a-posteriori (MAP) estimator, or the Bayes classifier) since, as we already know from previous chapters, these optimal constructions require knowledge of the conditional or joint probability distributions of the variables involved in the inference problem. Second, once a pdf is learned, we can sample from it to generate additional observations. For example, consider a database consisting of images of cats and assume we are able to characterize (or learn) the pdf distribution of the pixel values in these images. Then, we could use the learned pdf to generate “fake” cat-like images (i.e., ones that look like real cats). We will learn later in this text that this construction is possible and some machine-learning architectures are based on this principle: They use data to learn what we call a “generative model,” and then use the model to generate “similar” data. We provide a brief explanation to this effect in the next section, where we explain the significance of posterior distributions.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$110.00
Hardback
US$110.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers