Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 40: Independent Component Analysis

Chapter 40: Independent Component Analysis

pp. 1609-1642

Authors

, École Polytechnique Fédérale de Lausanne
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

The expectation-maximization (EM) and Baum–Welch algorithms are particularly useful for the processing of data arising from mixture models. Both techniques enable us to identify the parameters of the underlying components, for both cases when the observations are independent of each other or follow a first-order Markovian process. In this chapter, we consider another important example of a mixture model consisting of a collection of independent sources, a mixture matrix, and the observations. The objective is to undo the mixing and recover the original sources. The resulting technique is known as independent component analysis (ICA).

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$110.00
Hardback
US$110.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers