Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 30: Kalman Filter

Chapter 30: Kalman Filter

pp. 1154-1210

Authors

, École Polytechnique Fédérale de Lausanne
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

In this chapter we illustrate one important application of the linear meansquare-error (MSE) theory to the derivation of the famed Kalman filter. The filter is a powerful recursive technique for updating the estimates of the state (hidden) variables of a state-space model from noisy observations. The state evolution satisfies a Markovian property in the sense that the distribution of the state xn at time n is only dependent on the most recent past state, xn−1. Likewise, the distribution of the observation yn at the same time instant is only dependent on the state xn. The state and observation variables are represented by a linear state-space model, which will be shown to enable a powerful recursive solution. One key step in the argument is the introduction of the innovations process and the exploitation to great effect of the principle of orthogonality. In Chapter 35 we will allow for nonlinear state-space models and derive the class of particle filters by relying instead on the concept of sequential importance sampling.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$110.00
Hardback
US$110.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers