We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A partition is called a t-core if none of its hook lengths is a multiple of t. Let $a_t(n)$ denote the number of t-core partitions of n. Garvan, Kim and Stanton proved that for any $n\geq1$ and $m\geq1$, $a_t\big(t^mn-(t^2-1)/24\big)\equiv0\pmod{t^m}$, where $t\in\{5,7,11\}$. Let $A_{t,k}(n)$ denote the number of partition k-tuples of n with t-cores. Several scholars have been subsequently investigated congruence properties modulo high powers of 5 for $A_{5,k}(n)$ with $k\in\{2,3,4\}$. In this paper, by utilizing a recurrence related to the modular equation of fifth order, we establish dozens of congruence families modulo high powers of 5 satisfied by $A_{5,k}(n)$, where $4\leq k\leq25$. Moreover, we deduce an infinite family of internal congruences modulo high powers of 5 for $A_{5,4}(n)$. In particular, we generalize greatly a recent result on a congruence family modulo high powers of 5 enjoyed by $A_{5,4}(n)$, which was proved by Saikia, Sarma and Talukdar (Indian J. Pure Appl. Math., 2024). Finally, we conjecture that there exists a similar phenomenon for $A_{5,k}(n)$ with $k\geq26$.
that hold for all subsets A of the same discrete cubes. A general theory, analogous to the work of de Dios Pont, Greenfeld, Ivanisvili, and Madrid, is developed to show that the critical exponents are related by $p_{k,n} t_{k,n} = 2^k$. This is used to prove the three main results of the article:
• an explicit formula for $t_{k,2}$, which generalizes a theorem by Kane and Tao,
• two-sided asymptotic estimates for $t_{k,n}$ as $n\to\infty$ for a fixed $k\geqslant2$, which generalize a theorem by Shao, and
• a precise asymptotic formula for $t_{k,n}$ as $k\to\infty$ for a fixed $n\geqslant2$.
In this paper, we study discrepancy questions for spanning subgraphs of $k$-uniform hypergraphs. Our main result is that, for any integers $k \ge 3$ and $r \ge 2$, any $r$-colouring of the edges of a $k$-uniform $n$-vertex hypergraph $G$ with minimum $(k-1)$-degree $\delta (G) \ge (1/2+o(1))n$ contains a tight Hamilton cycle with high discrepancy, that is, with at least $n/r+\Omega (n)$ edges of one colour. The minimum degree condition is asymptotically best possible and our theorem also implies a corresponding result for perfect matchings. Our tools combine various structural techniques such as Turán-type problems and hypergraph shadows with probabilistic techniques such as random walks and the nibble method. We also propose several intriguing problems for future research.
In this paper, we study the asymptotic behavior of the generalized Zagreb indices of the classical Erdős–Rényi (ER) random graph G(n, p), as $n\to\infty$. For any integer $k\ge1$, we first give an expression for the kth-order generalized Zagreb index in terms of the number of star graphs of various sizes in any simple graph. The explicit formulas for the first two moments of the generalized Zagreb indices of an ER random graph are then obtained from this expression. Based on the asymptotic normality of the numbers of star graphs of various sizes, several joint limit laws are established for a finite number of generalized Zagreb indices with a phase transition for p in different regimes. Finally, we provide a necessary and sufficient condition for any single generalized Zagreb index of G(n, p) to be asymptotic normal.
We use the framework of multivariate regular variation to analyse the extremal behaviour of preferential attachment models. To this end, we follow a directed linear preferential attachment model for a random, heavy-tailed number of steps in time and treat the incoming edge count of all existing nodes as a random vector of random length. By combining martingale properties, moment bounds and a Breiman type theorem we show that the resulting quantity is multivariate regularly varying, both as a vector of fixed length formed by the edge counts of a finite number of oldest nodes, and also as a vector of random length viewed in sequence space. A Pólya urn representation allows us to explicitly describe the extremal dependence between the degrees with the help of Dirichlet distributions. As a by-product of our analysis we establish new results for almost sure convergence of the edge counts in sequence space as the number of nodes goes to infinity.
In 1967, Gerencsér and Gyárfás [16] proved a result which is considered the starting point of graph-Ramsey theory: In every 2-coloring of $K_n$, there is a monochromatic path on $\lceil (2n+1)/3\rceil $ vertices, and this is best possible. There have since been hundreds of papers on graph-Ramsey theory with some of the most important results being motivated by a series of conjectures of Burr and Erdős [2, 3] regarding the Ramsey numbers of trees (settled in [31]), graphs with bounded maximum degree (settled in [5]), and graphs with bounded degeneracy (settled in [23]).
In 1993, Erdős and Galvin [13] began the investigation of a countably infinite analogue of the Gerencsér and Gyárfás result: What is the largest d such that in every $2$-coloring of $K_{\mathbb {N}}$ there is a monochromatic infinite path with upper density at least d? Erdős and Galvin showed that $2/3\leq d\leq 8/9$, and after a series of recent improvements, this problem was finally solved in [7] where it was shown that $d={(12+\sqrt {8})}/{17}$.
This paper begins a systematic study of quantitative countably infinite graph-Ramsey theory, focusing on infinite analogues of the Burr-Erdős conjectures. We obtain some results which are analogous to what is known in finite case, and other (unexpected) results which have no analogue in the finite case.
We give a crystal structure on the set of Gelfand–Tsetlin patterns (GTPs), which parametrize bases for finite-dimensional irreducible representations of the general linear Lie algebra. The crystal data are given in closed form and are expressed using tropical polynomial functions of the entries of the patterns. We prove that with this crystal structure, the natural bijection between GTPs and semistandard Young tableaux is a crystal isomorphism.
We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.
Next, we focus on finite echeloned spaces. They form a Fraïssé class, and we describe its Fraïssé-limit both as the echeloned space induced by a certain homogeneous metric space and as the result of a random construction. Building on this, we show that the class of finite ordered echeloned spaces is Ramsey. The proof of this result combines a combinatorial argument by Nešetřil and Hubička with a topological-dynamical point of view due to Kechris, Pestov and Todorčević. Finally, using the method of Katětov functors due to Kubiś and Mašulović, we prove that the full symmetric group on a countable set topologically embeds into the automorphism group of the countable universal homogeneous echeloned space.
In their celebrated paper [CLR10], Caputo, Liggett and Richthammer proved Aldous’ conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality — a certain inequality of operators in the group ring $\mathbb{R}\left[{\mathrm{Sym}}_{n}\right]$ of the symmetric group. Here we generalise the Octopus Inequality and apply it to generalising the Caputo–Liggett–Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.
The payoff in the Chow–Robbins coin-tossing game is the proportion of heads when you stop. Stopping to maximize expectation was addressed by Chow and Robbins (1965), who proved there exist integers ${k_n}$ such that it is optimal to stop at n tosses when heads minus tails is ${k_n}$. Finding ${k_n}$ was unsolved except for finitely many cases by computer. We prove an $o(n^{-1/4})$ estimate of the stopping boundary of Dvoretsky (1967), which then proves ${k_n} = \left\lceil {\alpha \sqrt n \,\, - 1/2\,\, + \,\,\frac{{\left( { - 2\zeta (\! -1/2)} \right)\sqrt \alpha }}{{\sqrt \pi }}{n^{ - 1/4}}} \right\rceil $ except for n in a set of density asymptotic to 0, at a power law rate. Here, $\alpha$ is the Shepp–Walker constant from the Brownian motion analog, and $\zeta$ is Riemann’s zeta function. An $n^{ - 1/4}$ dependence was conjectured by Christensen and Fischer (2022). Our proof uses moments involving Catalan and Shapiro Catalan triangle numbers which appear in a tree resulting from backward induction, and a generalized backward induction principle. It was motivated by an idea of Häggström and Wästlund (2013) to use backward induction of upper and lower Value bounds from a horizon, which they used numerically to settle a few cases. Christensen and Fischer, with much better bounds, settled many more cases. We use Skorohod’s embedding to get simple upper and lower bounds from the Brownian analog; our upper bound is the one found by Christensen and Fischer in another way. We use them first for yet many more examples and a conjecture, then algebraically in the tree, with feedback to get much sharper Value bounds near the border, and analytic results. Also, we give a formula that gives the exact optimal stop rule for all n up to about a third of a billion; it uses the analytic result plus terms arrived at empirically.
We present a short and simple proof of the celebrated hypergraph container theorem of Balogh–Morris–Samotij and Saxton–Thomason. On a high level, our argument utilises the idea of iteratively taking vertices of largest degree from an independent set and constructing a hypergraph of lower uniformity which preserves independent sets and inherits edge distribution. The original algorithms for constructing containers also remove in each step vertices of high degree, which are not in the independent set. Our modified algorithm postpones this until the end, which surprisingly results in a significantly simplified analysis.
Ruzsa asked whether there exist Fourier-uniform subsets of $\mathbb Z/N\mathbb Z$ with density $\alpha$ and 4-term arithmetic progression (4-AP) density at most $\alpha^C$, for arbitrarily large C. Gowers constructed Fourier uniform sets with density $\alpha$ and 4-AP density at most $\alpha^{4+c}$ for some small constant $c \gt 0$. We show that an affirmative answer to Ruzsa’s question would follow from the existence of an $N^{o(1)}$-colouring of [N] without symmetrically coloured 4-APs. For a broad and natural class of constructions of Fourier-uniform subsets of $\mathbb Z/N\mathbb Z$, we show that Ruzsa’s question is equivalent to our arithmetic Ramsey question.
We prove analogous results for all even-length APs. For each odd $k\geq 5$, we show that there exist $U^{k-2}$-uniform subsets of $\mathbb Z/N\mathbb Z$ with density $\alpha$ and k-AP density at most $\alpha^{c_k \log(1/\alpha)}$. We also prove generalisations to arbitrary one-dimensional patterns.
A simple probabilistic argument shows that every r-uniform hypergraph with m edges contains an r-partite subhypergraph with at least $({r!}/{r^r})m$ edges. The celebrated result of Edwards states that in the case of graphs, that is $r=2$, the resulting bound $m/2$ can be improved to $m/2+\Omega(m^{1/2})$, and this is sharp. We prove that if $r\geq 3$, then there is an r-partite subhypergraph with at least $({r!}/{r^r}) m+m^{3/5-o(1)}$ edges. Moreover, if the hypergraph is linear, this can be improved to $({r!}/{r^r}) m+m^{3/4-o(1)}$, which is tight up to the o(1) term. These improve results of Conlon, Fox, Kwan and Sudakov. Our proof is based on a combination of probabilistic, combinatorial, and linear algebraic techniques, and semidefinite programming.
A key part of our argument is relating the energy$\mathcal{E}(G)$ of a graph G (i.e. the sum of absolute values of eigenvalues of the adjacency matrix) to its maximum cut. We prove that every m edge multigraph G has a cut of size at least $m/2+\Omega({\mathcal{E}(G)}/{\log m})$, which might be of independent interest.
Amdeberhan et al. [‘Arithmetic properties for generalized cubic partitions and overpartitions modulo a prime’, Aequationes Math. (2024), doi:10.1007/s00010-024-01116-7] defined the generalised cubic partition function $a_c(n)$ as the number of partitions of n whose even parts may appear in $c\geq 1$ different colours and proved that $a_3(7n+4)\equiv 0\pmod {7}$ and $a_5(11n+10)\equiv 0\pmod {11}$ for all $n\geq 0$ via modular forms. Recently, the author [‘A note on congruences for generalized cubic partitions modulo primes’, Integers25 (2025), Article no. A20] gave elementary proofs of these congruences. We prove in this note two infinite families of congruences modulo $5$ for $a_c(n)$ given by
Given a fixed k-uniform hypergraph F, the F-removal lemma states that every hypergraph with few copies of F can be made F-free by the removal of few edges. Unfortunately, for general F, the constants involved are given by incredibly fast-growing Ackermann-type functions. It is thus natural to ask for which F one can prove removal lemmas with polynomial bounds. One trivial case where such bounds can be obtained is when F is k-partite. Alon proved that when $k=2$ (i.e. when dealing with graphs), only bipartite graphs have a polynomial removal lemma. Kohayakawa, Nagle and Rödl conjectured in 2002 that Alon’s result can be extended to all $k\gt2$, namely, that the only $k$-graphs $F$ for which the hypergraph removal lemma has polynomial bounds are the trivial cases when F is k-partite. In this paper we prove this conjecture.
We study several basic problems about colouring the $p$-random subgraph $G_p$ of an arbitrary graph $G$, focusing primarily on the chromatic number and colouring number of $G_p$. In particular, we show that there exist infinitely many $k$-regular graphs $G$ for which the colouring number (i.e., degeneracy) of $G_{1/2}$ is at most $k/3 + o(k)$ with high probability, thus disproving the natural prediction that such random graphs must have colouring number at least $k/2 - o(k)$.
A conjecture of Jackson from 1981 states that every d-regular oriented graph on n vertices with $n\leq 4d+1$ is Hamiltonian. We prove this conjecture for sufficiently large n. In fact we prove a more general result that for all $\alpha>0$, there exists $n_0=n_0(\alpha )$ such that every d-regular digraph on $n\geq n_0$ vertices with $d \ge \alpha n $ can be covered by at most $n/(d+1)$ vertex-disjoint cycles, and moreover that if G is an oriented graph, then at most $n/(2d+1)$ cycles suffice.
Let us say that a graph $G$ is Ramsey for a tuple $(H_1,\ldots,H_r)$ of graphs if every r-colouring of the edges of G contains a monochromatic copy of $H_i$ in colour i, for some $i \in [\![{r}]\!]$. A famous conjecture of Kohayakawa and Kreuter, extending seminal work of Rödl and Ruciński, predicts the threshold at which the binomial random graph $G_{n,p}$ becomes Ramsey for $(H_1,\ldots,H_r)$ asymptotically almost surely.
In this paper, we resolve the Kohayakawa–Kreuter conjecture for almost all tuples of graphs. Moreover, we reduce its validity to the truth of a certain deterministic statement, which is a clear necessary condition for the conjecture to hold. All of our results actually hold in greater generality, when one replaces the graphs $H_1,\ldots,H_r$ by finite families $\mathcal{H}_1,\ldots,\mathcal{H}_r$. Additionally, we pose a natural (deterministic) graph-partitioning conjecture, which we believe to be of independent interest, and whose resolution would imply the Kohayakawa–Kreuter conjecture.
We study the generalized Ramsey–Turán function $\mathrm {RT}(n,K_s,K_t,o(n))$, which is the maximum possible number of copies of $K_s$ in an n-vertex $K_t$-free graph with independence number $o(n)$. The case when $s=2$ was settled by Erdős, Sós, Bollobás, Hajnal, and Szemerédi in the 1980s. We combinatorially resolve the general case for all $s\ge 3$, showing that the (asymptotic) extremal graphs for this problem have simple (bounded) structures. In particular, it implies that the extremal structures follow a periodic pattern when t is much larger than s. Our results disprove a conjecture of Balogh, Liu, and Sharifzadeh and show that a relaxed version does hold.
A fundamental extremality result due to Sidorenko [‘A partially ordered set of functionals corresponding to graphs’, Discrete Math.131(1–3) (1994), 263–277] states that among all connected graphs G on k vertices, the k-vertex star maximises the number of graph homomorphisms of G into any graph H. We provide a new short proof of this result using only a simple recursive counting argument for trees and Hölder’s inequality.