We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate upper bounds for the spectral ratios and gaps for the Steklov eigenvalues of balls with revolution-type metrics. We do not impose conditions on the Ricci curvature or on the convexity of the boundary. We obtain optimal upper bounds for the Steklov spectral ratios in dimensions 3 and higher. In dimension 3, we also obtain optimal upper bounds for the Steklov spectral gaps. By imposing additional constraints on the metric, we obtain upper bounds for the Steklov spectral gaps in dimensions 4 and higher.
The aim of this paper is to prove a qualitative property, namely the preservation of positivity, for Schrödinger-type operators acting on $L^p$ functions defined on (possibly incomplete) Riemannian manifolds. A key assumption is a control of the behaviour of the potential of the operator near the Cauchy boundary of the manifolds. As a by-product, we establish the essential self-adjointness of such operators, as well as its generalization to the case $p\neq 2$, i.e. the fact that smooth compactly supported functions are an operator core for the Schrödinger operator in $L^p$.
We establish two-term spectral asymptotics for the operator of linear elasticity with mixed boundary conditions on a smooth compact Riemannian manifold of arbitrary dimension. We illustrate our results by explicit examples in dimension two and three, thus verifying our general formulae both analytically and numerically.
We consider the problem of minimizing the $L^\infty$ norm of a function of the hessian over a class of maps, subject to a mass constraint involving the $L^\infty$ norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the “hinged” and the “clamped” cases. By employing the method of $L^p$ approximations, we establish the existence of a special $L^\infty$ minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue.
The central theme of this paper is the holomorphic spectral theory of the canonical Laplace operator of the complement of the “complexified unit circle” $\{(z,w) \in \widehat {{\mathbb C}}^2 \colon z \cdot w = 1\}$. We start by singling out a distinguished set of holomorphic eigenfunctions on the bidisk in terms of hypergeometric ${}_2F_1$ functions and prove that they provide a spectral decomposition of every holomorphic eigenfunction on the bidisk. As a second step, we identify the maximal domains of definition of these eigenfunctions and show that these maximal domains naturally determine the fine structure of the eigenspaces. Our main result gives an intrinsic classification of all closed Möbius invariant subspaces of eigenspaces of the canonical Laplacian of $\Omega $. Generalizing foundational prior work of Helgason and Rudin, this provides a unifying complex analytic framework for the real-analytic eigenvalue theories of both the hyperbolic and spherical Laplace operators on the open unit disk resp. the Riemann sphere and, in particular, shows how they are interrelated with one another.
For $s_1,\,s_2\in (0,\,1)$ and $p,\,q \in (1,\, \infty )$, we study the following nonlinear Dirichlet eigenvalue problem with parameters $\alpha,\, \beta \in \mathbb {R}$ driven by the sum of two nonlocal operators:
where $\Omega \subset \mathbb {R}^d$ is a bounded open set. Depending on the values of $\alpha,\,\beta$, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional $(\alpha,\, \beta )$-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional $p$-Laplace and fractional $q$-Laplace operators are linearly independent, which plays an essential role in the formation of the curve. Furthermore, we establish that every nonnegative solution of (P) is globally bounded.
We obtain a new upper bound for Neumann eigenvalues of the Laplacian on a bounded convex domain in Euclidean space. As an application of the upper bound, we derive universal inequalities for Neumann eigenvalues of the Laplacian.
on bounded domains, known in the literature as the Whitham–Broer–Kaup system. The well-posedness of the problem, under suitable boundary conditions, is addressed, and it is shown to depend on the sign of the number
\[ \varkappa=\alpha-\beta^2. \]
In particular, existence and uniqueness occur if and only if $\varkappa >0$. In which case, an explicit representation for the solutions is given. Nonetheless, for the case $\varkappa \leq 0$ we have uniqueness in the class of strong solutions, and sufficient conditions to guarantee exponential instability are provided.
We prove Lp norm convergence for (appropriate truncations of) the Fourier series arising from the Dirichlet Laplacian eigenfunctions on three types of triangular domains in $\mathbb{R}^2$: (i) the 45-90-45 triangle, (ii) the equilateral triangle and (iii) the hemiequilateral triangle (i.e. half an equilateral triangle cut along its height). The limitations of our argument to these three types are discussed in light of Lamé’s Theorem and the image method.
We first prove that the realization $A_{\mathrm {min}}$ of $A:={\operatorname {\mathrm {div}}}(Q\nabla )-V$ in $L^2({\mathbb {R}}^d)$ with unbounded coefficients generates a symmetric sub-Markovian and ultracontractive semigroup on $L^2({\mathbb {R}}^d)$ which coincides on $L^2({\mathbb {R}}^d)\cap C_b({\mathbb {R}}^d)$ with the minimal semigroup generated by a realization of $A$ on $C_b({\mathbb {R}}^d)$. Moreover, using time-dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernel of $A$ and deduce some spectral properties of $A_{\min }$ in the case of polynomially and exponentially growing diffusion and potential coefficients.
We prove Reilly-type upper bounds for the first nonzero eigenvalue of the Steklov problem associated with the p-Laplace operator on submanifolds of manifolds with sectional curvature bounded from above by a nonnegative constant.
We consider the Dirichlet Laplacian with uniform magnetic field on a curved strip in two dimensions. We give a sufficient condition on the width and the curvature of the strip ensuring the existence of the discrete spectrum in the strong magnetic field limit, answering (negatively) a conjecture made by Duclos and Exner.
We investigate the continuity and differentiability of the Hardy constant with respect to perturbations of the domain in the case where the problem involves the distance from a boundary submanifold. We also investigate the case where only the submanifold is deformed.
Given an open, bounded set $\Omega $ in $\mathbb {R}^N$, we consider the minimization of the anisotropic Cheeger constant $h_K(\Omega )$ with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if $\Omega $ is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.
We extend a result of Lieb [‘On the lowest eigenvalue of the Laplacian for the intersection of two domains’, Invent. Math.74(3) (1983), 441–448] to the fractional setting. We prove that if A and B are two bounded domains in $\mathbb R^N$ and $\lambda _s(A)$, $\lambda _s(B)$ are the lowest eigenvalues of $(-\Delta )^s$, $0<s<1$, with Dirichlet boundary conditions, there exists some translation $B_x$ of B such that $\lambda _s(A\cap B_x)< \lambda _s(A)+\lambda _s(B)$. Moreover, without the boundedness assumption on A and B, we show that for any $\varepsilon>0$, there exists some translation $B_x$ of B such that $\lambda _s(A\cap B_x)< \lambda _s(A)+\lambda _s(B)+\varepsilon .$
We give a short proof of the Torelli theorem for
$ALH^*$
gravitational instantons using the authors’ previous construction of mirror special Lagrangian fibrations in del Pezzo surfaces and rational elliptic surfaces together with recent work of Sun-Zhang. In particular, this includes an identification of 10 diffeomorphism types of
$ALH^*_b$
gravitational instantons.
For $N\geq 2$, a bounded smooth domain $\Omega$ in $\mathbb {R}^{N}$, and $g_0,\, V_0 \in L^{1}_{loc}(\Omega )$, we study the optimization of the first eigenvalue for the following weighted eigenvalue problem:
\[ -\Delta_p \phi + V |\phi|^{p-2}\phi = \lambda g |\phi|^{p-2}\phi \text{ in } \Omega, \quad \phi=0 \text{ on } \partial \Omega, \]
where $g$ and $V$ vary over the rearrangement classes of $g_0$ and $V_0$, respectively. We prove the existence of a minimizing pair $(\underline {g},\,\underline {V})$ and a maximizing pair $(\overline {g},\,\overline {V})$ for $g_0$ and $V_0$ lying in certain Lebesgue spaces. We obtain various qualitative properties such as polarization invariance, Steiner symmetry of the minimizers as well as the associated eigenfunctions for the case $p=2$. For annular domains, we prove that the minimizers and the corresponding eigenfunctions possess the foliated Schwarz symmetry.
This paper proposes a fairly general new point of view on the question of asymptotic stability of (topological) solitons. Our approach is based on the use of the distorted Fourier transform at the nonlinear level; it does not rely only on Strichartz or virial estimates and is therefore able to treat low-power nonlinearities (hence also nonlocalised solitons) and capture the global (in space and time) behaviour of solutions.
More specifically, we consider quadratic nonlinear Klein-Gordon equations with a regular and decaying potential in one space dimension. Additional assumptions are made so that the distorted Fourier transform of the solution vanishes at zero frequency. Assuming also that the associated Schrödinger operator has no negative eigenvalues, we obtain global-in-time bounds, including sharp pointwise decay and modified asymptotics, for small solutions.
These results have some direct applications to the asymptotic stability of (topological) solitons, as well as several other potential applications to a variety of related problems. For instance, we obtain full asymptotic stability of kinks with respect to odd perturbations for the double sine-Gordon problem (in an appropriate range of the deformation parameter). For the
$\phi ^4$
problem, we obtain asymptotic stability for small odd solutions, provided the nonlinearity is projected on the continuous spectrum. Our results also go beyond these examples since our framework allows for the presence of a fully coherent phenomenon (a space-time resonance) at the level of quadratic interactions, which creates a degeneracy in distorted Fourier space. We devise a suitable framework that incorporates this and use multilinear harmonic analysis in the distorted setting to control all nonlinear interactions.
The purpose of this article is to prove a ‘Newton over Hodge’ result for finite characters on curves. Let X be a smooth proper curve over a finite field
$\mathbb {F}_q$
of characteristic
$p\geq 3$
and let
$V \subset X$
be an affine curve. Consider a nontrivial finite character
$\rho :\pi _1^{et}(V) \to \mathbb {C}^{\times }$
. In this article, we prove a lower bound on the Newton polygon of the L-function
$L(\rho ,s)$
. The estimate depends on monodromy invariants of
$\rho $
: the Swan conductor and the local exponents. Under certain nondegeneracy assumptions, this lower bound agrees with the irregular Hodge filtration introduced by Deligne. In particular, our result further demonstrates Deligne’s prediction that the irregular Hodge filtration would force p-adic bounds on L-functions. As a corollary, we obtain estimates on the Newton polygon of a curve with a cyclic action in terms of monodromy invariants.
We consider the three-dimensional sloshing problem on a triangular prism whose angles with the sloshing surface are of the form
${\pi}/{2q}$
, where q is an integer. We are interested in finding a two-term asymptotic expansion of the eigenvalue counting function. When both angles are
${\pi}/{4}$
, we compute the exact value of the second term. As for the general case, we conjecture an asymptotic expansion by constructing quasimodes for the problem and computing the counting function of the related quasi-eigenvalues. These quasimodes come from solutions of the sloping beach problem and correspond to two kinds of waves, edge waves and surface waves. We show that the quasi-eigenvalues are exponentially close to real eigenvalues of the sloshing problem. The asymptotic expansion of their counting function is closely related to a lattice counting problem inside a perturbed ellipse where the perturbation is in a sense random. The contribution of the angles can then be detected through that perturbation.