Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.
Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.
Maximise student engagement and understanding of matrix methods in data-driven applications with this modern teaching package. Students are introduced to matrices in two preliminary chapters, before progressing to advanced topics such as the nuclear norm, proximal operators and convex optimization. Highlighted applications include low-rank approximation, matrix completion, subspace learning, logistic regression for binary classification, robust PCA, dimensionality reduction and Procrustes problems. Extensively classroom-tested, the book includes over 200 multiple-choice questions suitable for in-class interactive learning or quizzes, as well as homework exercises (with solutions available for instructors). It encourages active learning with engaging 'explore' questions, with answers at the back of each chapter, and Julia code examples to demonstrate how the mathematics is actually used in practice. A suite of computational notebooks offers a hands-on learning experience for students. This is a perfect textbook for upper-level undergraduates and first-year graduate students who have taken a prior course in linear algebra basics.
Maximise student engagement and understanding of matrix methods in data-driven applications with this modern teaching package. Students are introduced to matrices in two preliminary chapters, before progressing to advanced topics such as the nuclear norm, proximal operators and convex optimization. Highlighted applications include low-rank approximation, matrix completion, subspace learning, logistic regression for binary classification, robust PCA, dimensionality reduction and Procrustes problems. Extensively classroom-tested, the book includes over 200 multiple-choice questions suitable for in-class interactive learning or quizzes, as well as homework exercises (with solutions available for instructors). It encourages active learning with engaging 'explore' questions, with answers at the back of each chapter, and Julia code examples to demonstrate how the mathematics is actually used in practice. A suite of computational notebooks offers a hands-on learning experience for students. This is a perfect textbook for upper-level undergraduates and first-year graduate students who have taken a prior course in linear algebra basics.
Based on material taught at the University of California, Berkeley, this textbook offers a modern, rigorous and comprehensive treatment of the methods of structural and system reliability analysis. It covers the first- and second-order reliability methods for components and systems, simulation methods, time- and space-variant reliability, and Bayesian parameter estimation and reliability updating. It also presents more advanced, state-of-the-art topics such as finite-element reliability methods, stochastic structural dynamics, reliability-based optimal design, and Bayesian networks. A wealth of well-designed examples connect theory with practice, with simple examples demonstrating mathematical concepts and larger examples demonstrating their applications. End-of-chapter homework problems are included throughout. Including all necessary background material from probability theory, and accompanied online by a solutions manual and PowerPoint slides for instructors, this is the ideal text for senior undergraduate and graduate students taking courses on structural and system reliability in departments of civil, environmental and mechanical engineering.
Based on material taught at the University of California, Berkeley, this textbook offers a modern, rigorous and comprehensive treatment of the methods of structural and system reliability analysis. It covers the first- and second-order reliability methods for components and systems, simulation methods, time- and space-variant reliability, and Bayesian parameter estimation and reliability updating. It also presents more advanced, state-of-the-art topics such as finite-element reliability methods, stochastic structural dynamics, reliability-based optimal design, and Bayesian networks. A wealth of well-designed examples connect theory with practice, with simple examples demonstrating mathematical concepts and larger examples demonstrating their applications. End-of-chapter homework problems are included throughout. Including all necessary background material from probability theory, and accompanied online by a solutions manual and PowerPoint slides for instructors, this is the ideal text for senior undergraduate and graduate students taking courses on structural and system reliability in departments of civil, environmental and mechanical engineering.
Dive into the foundations of intelligent systems, machine learning, and control with this hands-on, project-based introductory textbook. Precise, clear introductions to core topics in fuzzy logic, neural networks, optimization, deep learning, and machine learning, avoid the use of complex mathematical proofs, and are supported by over 70 examples. Modular chapters built around a consistent learning framework enable tailored course offerings to suit different learning paths. Over 180 open-ended review questions support self-review and class discussion, over 120 end-of-chapter problems cement student understanding, and over 20 hands-on Arduino assignments connect theory to practice, supported by downloadable Matlab and Simulink code. Comprehensive appendices review the fundamentals of modern control, and contain practical information on implementing hands-on assignments using Matlab, Simulink, and Arduino. Accompanied by solutions for instructors, this is the ideal guide for senior undergraduate and graduate engineering students, and professional engineers, looking for an engaging and practical introduction to the field.
Dive into the foundations of intelligent systems, machine learning, and control with this hands-on, project-based introductory textbook. Precise, clear introductions to core topics in fuzzy logic, neural networks, optimization, deep learning, and machine learning, avoid the use of complex mathematical proofs, and are supported by over 70 examples. Modular chapters built around a consistent learning framework enable tailored course offerings to suit different learning paths. Over 180 open-ended review questions support self-review and class discussion, over 120 end-of-chapter problems cement student understanding, and over 20 hands-on Arduino assignments connect theory to practice, supported by downloadable Matlab and Simulink code. Comprehensive appendices review the fundamentals of modern control, and contain practical information on implementing hands-on assignments using Matlab, Simulink, and Arduino. Accompanied by solutions for instructors, this is the ideal guide for senior undergraduate and graduate engineering students, and professional engineers, looking for an engaging and practical introduction to the field.